Главная > Математика > Алгебра. Учебник для 6-8 классов
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 5. Основные законы сложения и умножения.

В дальнейшем, когда будем изучать действия над числами, изображёнными цифрами или буквами (безразлично), нам придётся во многих выводах опираться на те законы действий, которые изучались в арифметике. В силу важности этих законов они называются основными законами действий.

Напомним их.

1. Переместительный закон сложения.

Сумма не изменяется от перемены порядка слагаемых.

Этот закон уже был записан в § 1 в виде равенства:

где а и — любые числа.

Из арифметики известно, что переместительный закон верен для суммы любого числа слагаемых.

2. Сочетательный закон сложения.

Сумма нескольких слагаемых не изменится, если какую-нибудь группу рядом стоящих слагаемых заменить их суммой.

Для суммы трёх слагаемых имеем:

Например, сумму можно вычислить двумя способами так:

Сочетательный закон справедлив для любого числа слагаемых.

Так, в сумме четырёх слагаемых рядом стоящие слагаемые можно как угодно объединять в группы и заменять эти слагаемые их суммой:

Например, мы получим то же число 16, каким бы способом ни группировали рядом стоящие слагаемые:

Переместительным и сочетательным законами часто пользуются при устных вычислениях, располагая числа так, чтобы легче было их сложить в уме.

Пример 1.

Поменяем местами два последних слагаемых, получим:

Сложить числа в этом порядке оказалось гораздо легче.

Обычно слагаемые в новом порядке не переписывают, а производят их перемещение в уме: переставив мысленно 67 и И, сразу складывают 89 и 11 и затем прибавляют 67.

Пример 2.

Чтобы легче было сложить эти числа в уме, изменим порядок слагаемых так:

Пользуясь сочетательным законом, заключим два последних слагаемых в скобки:

Сложение чисел в скобках произвести легко, получим:

3. Переместительный закон умножения.

Произведение не изменяется от перемены порядка сомножителей:

где — любые числа.

Из арифметики известно, что переместительный закон верен для произведения любого числа сомножителей.

4. Сочетательный закон умножения.

Произведение нескольких сомножителей не изменится, если какую-нибудь группу рядом стоящих сомножителей заменить их произведением.

Для произведения трёх сомножителей имеем:

Например, произведение трёх сомножителей 5-3-4 можно вычислить так:

или так:

Для произведения четырёх сомножителей имеем:

Например, то же число 20 получится при любой группировке рядом стоящих сомножителей:

Применение переместительного и сочетательного законов умножения часто значительно облегчает вычисления.

Пример 1.

Умножить 25 на 37 не очень легко. Переместим два последних сомножителя:

Теперь умножение легко выполнится в уме.

Пример 2.

Применим переместительный и сочетательный законы, запишем это выражение так:

Все эти действия легко выполняются в уме.

5. Распределительный закон умножения по отношению к сложению.

Чтобы умножить сумму двух (или нескольких) чисел на какое-либо число, можно каждое слагаемое умножить на это число и результаты сложить:

Пример 1. Распределительный закон мы применяем, например, при умножении двузначных (и многозначных) чисел. Так, чтобы умножить 26 на 7, мы представляем 26 в виде суммы , умножаем 20 на 7, 6 на 7 и результаты складываем;

Но иногда бывает выгоднее поступать наоборот: вместо того чтобы умножить каждое слагаемое на одно и то же число, сначала находят сумму этих слагаемых и умножают её на данное число.

Пример 2.

Представим выражение в другом виде:

Мы применили здесь распределительный закон, но только записанный в обратном порядке:

Теперь вычисление выполняется очень легко (устно).

<< Предыдущий параграф Следующий параграф >>
Оглавление