Главная > Разное > Теория систем автоматического регулирования
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

РАЗДЕЛ I. ОБЩИЕ СВЕДЕНИЯ О СИСТЕМАХ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ

ГЛАВА 1. ВИДЫ СИСТЕМ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ

§ 1.1. Понятие о замкнутых автоматических системах

Существует чрезвычайно большое разнообразие автоматических систем выполняющих те или иные функции по управлению самыми различными физическими процессами во всех областях техники. В этих системах сочетаются весьма разнообразные по конструкции механические, электрические и другие устройства, составляя, в общем, сложный комплекс взаимодействующих друг с другом звеньев.

Примерами автоматических систем могут служить:

а) автомат включения освещения, в котором имеется фотоэлемент, реагирующий на силу дневного света, и специальное устройство для включения освещения, срабатывающее от определенного сигнала фотоэлемента;

б) автомат, выбрасывающий какие-либо определенные предметы (билеты, шоколад) при опускании в него определенной комбинации монет;

в) станок-автомат, автоматические линии станков и автоматические цехи на заводах;

г) системы телеуправления, в которых от нажатия кнопки или от легкого поворота ручки на пульте управления совершается определенная комбинация мощных и сложных операций в управляемом объекте;

д) автоматический регулятор скорости вращения двигателя, поддерживающий постоянную угловую скорость двигателя независимо от внешней нагрузки (аналогично регуляторы температуры, давления, напряжения, частоты и пр.);

е) автопилот, поддерживающий определенный курс и высоту полета самолета без помощи летчика;

ж) следящая система, на выходе которой с определенной точностью копируется произвольное во времени изменение какой-нибудь величины, поданной на вход;

з) система сопровождения, в которой ствол наземного орудия автоматически поворачивается за летящим самолетом;

и) вычислительное устройство, выполняющее определенную математическую операцию (дифференцирование, интегрирование, решение уравнений и т. п.);

к) измерительные приборы, работающие по так называемому компенсационному принципу;

л) система самонаведения снаряда на цель и пр.

Все эти и им подобные автоматические системы можно разделить на два больших класса:

1) автоматы, выполняющие определенного рода одноразовые или многоразовые операции; сюда относятся, например, автомат включения освещения, билетный автомат, станок-автомат, ружье-автомат, автомат переключения скоростей и т. п.;

2) автоматические системы, которые в течение достаточно длительного времени нужным образом изменяют (или поддерживают неизменными) какие-либо физические величины (координаты движущегося объекта, скорость движения, электрическое напряжение, частоту, температуру, давление, громкость звука и пр.) в том или ином управляемом процессе. Сюда относятся автоматические регуляторы, следящие системы, автопилоты, некоторые вычислительные устройства, некоторые измерительные приборы, системы дистанционного управления, телеуправления, самонаведения и т. п.

В данной книге будут рассматриваться только автоматические системы второго класса. Эти последние делятся в свою очередь на незамкнутые и замкнутые автоматические системы.

Общая структурная схема незамкнутой системы в двух вариантах представлена на рис. 1.1, а и б. Это — простейшие схемы управления: полуавтоматические, когда источником воздействия является человек, и автоматические, если источником воздействия является изменение каких-либо внешних условий, в которых работает данная система (температура или давление окружающей среды, электрический ток, освещенность, изменение частоты и т. п.).

Рис. 1.1.

Вторая из показанных на рис. 1.1 структурных схем отличается от первой тем, что кроме органов управления имеются еще контрольные приборы, которые дают возможность наблюдать за протеканием процесса в управляемом объекте.

Характерным для незамкнутой системы является то, что процесс работы системы не зависит непосредственно от результата ее воздействия на управляемый объект.

Естественным дальнейшим усовершенствованием автоматической системы является замыкание ее выхода (контрольные приборы) со входом (источник воздействия) таким образом, чтобы контрольные приборы, измерив некоторые величины, характеризующие определенный процесс в управляемом объекте, сами служили бы одновременно и источником воздействия на систему, причем величина этого воздействия зависела бы от того, насколько отличаются измеренные величины на управляемом объекте от требуемых значений.

Таким образом возникает замкнутая автоматическая система. В наиболее компактной форме она представлена на рис. 1.2. Более развернутая функциональная блок-схема замкнутой автоматической системы дана на рис. 1.3 и в другом варианте — на рис. 1.4, где замкнутый контур скомбинирован с разомкнутыми каналами. На этих схемах стрелками обозначены направления воздействий или передачи информации с одного блока системы на другой.

Очевидно, что в замкнутой автоматической системе имеется полная взаимозависимость работы всех звеньев друг от друга. Протекание всех процессов в замкнутой системе коренным образом отличается от процессов в незамкнутой системе. Замкнутая система совершенно по другому реагирует

на внешние возмущающие воздействия. Различные ценные свойства замкнутых автоматических систем делают их незаменимыми во многих случаях, когда требуется точность и быстродействие для управления, измерения или для производства математических вычислений.

Рис. 1.2.

Рис. 1.3.

Рис. 1.4.

Поэтому при создании всяких замкнутых автоматических систем особое значение приобретают динамические расчеты.

Замкнутые автоматические системы существуют в технике в виде различных автоматических систем управления, систем автоматического регулирования, следящих систем, вычислительных систем, компенсационных систем измерения, систем автоматического пилотирования, систем стабилизации,

систем самонаведения, телеуправления, автономного управления и т. п.

Введем общую терминологию для следящих систем, систем регулирования и управления, изобразив общую схему в виде рис. 1.5.

В следящей системе выходная величина воспроизводит изменение входной величины причем автоматическое устройство реагирует на рассогласование между выходной и входной величинами. Условимся величины у и называть соответственно регулируемой величиной и задающим воздействием.

Следящая система имеет обратную связь 8 выхода со входом, которая, по сути дела, служит для измерения результата действия системы. На входе системы производится вычитание

Рис. 1.5.

Рис. 1.6.

Устройство, производящее это вычитание, будем называть датчиком рассогласования. Величина рассогласования х и воздействует на промежуточные устройства, а через них — на управляемый объект. Система работает так, чтобы все время сводить к нулю рассогласование х.

Упрощенную схему следящей системы можно изобразить в виде рис. 1.6, где (единичная обратная связь).

Источником воздействия на задающее устройство может быть либо человек, либо специальное устройство, либо изменение внешних условий, в которых работает система.

Для систем автоматического регулирования введем следующую терминологию (рис. 1.5).

Агрегат 7, в котором происходит процесс, подлежащий регулированию, называется регулируемым объектом. Для краткости будем говорить просто объект. Величина у, которую необходимо в этом агрегате регулировать, т. е. поддерживать постоянной или изменять по заданной программе, называется регулируемой величиной.

Автоматически действующее устройство, предназначенное для выполнения задачи регулирования, называется автоматическим регулятором (впоследствии для краткости будем говорить просто регулятор). На рис. 1.5 он разбит на ряд звеньев. Автоматический регулятор включает в себя измерительное устройство 5, т. е. чувствительный элемент, реагирующий на отклонение регулируемой величины у. Далее ставится усилительно-преобразовательное и исполнительное устройства (звенья 4, 5, 6 на рис. 1.5, см. также рис. 1.2). Они служат для формирования регулирующего воздействия на объект, для возможно более точного выполнения задачи регулирования при реально имеющемся возмущающем воздействии

Автоматический регулятор вместе с регулируемым объектом называется системой автоматического регулирования.

Системы автоматического регулирования, поддерживающие постоянное (в частности, нулевое) значение регулируемой величины, называют также системами стабилизации Часто этот термин применяется для систем автоматического регулирования и управления, включающих в себя гироскопические устройства (гиростабилизация), но и во многих других случаях говорят также о стабилизации скорости, напряжения и т. п. при помощи автоматических регуляторов. Система автоматического регулирования, изменяющая значения регулируемой величины по заранее заданной программе, называется системой программного регулирования.

Регулятор, в котором имеется усилительно-преобразовательное устройство, питаемое извне от добавочного источника энергии (рис. 1.5), называется регулятором непрямого действия. В простейших регуляторах, как увидим ниже, усилительно-преобразовательного устройства и привода может и не быть вовсе, т. е. измерительное устройство может непосредственно (без дополнительного источника энергии) воздействовать на регулирующий орган (рис. 1.7). Такой регулятор называется регулятором прямого действия. Питание регулятора прямого действия энергией идет не извне, а целиком за счет энергии самого регулируемого объекта, подаваемой через измерительное устройство.

Рис. 1.7.

Но существуют, наоборот, и более сложные регуляторы. Так, кроме одиночных систем регулирования, о которых здесь идет речь, состоящих из одного регулируемого объекта и одного регулятора, существуют так называемые связанные или многомерные системы регулирования. Многомерными системами регулирования называются такие, в которых имеется несколько регулируемых величин или в единый автоматически работающий комплекс связаны несколько регуляторов на одном объекте или несколько регуляторов и несколько объектов с перекрестными связями между ними.

Те же общие принципы используются в разного рода системах автоматического управления. Управление — более общий термин, чем регулирование, стабилизация, слежение, ориентация, наведение. Система автоматического управления может решать любую из этих задач, но может решать также и совокупность такого рода задач и иметь различные дополнительные функции.

Обратимся, например, к системе автоматического управления полетом самолета (система самолет — автопилот). Автопилот имеет три канала управления: управление движением в вертикальной плоскости (по тангажу), управление движением в горизонтальной плоскости (по курсу) и управление поворотом вокруг собственной оси (по крену). Для примера на рис. 1.8 изображен один канал автопилота — курсовой. Здесь корпус самолета 1 является объектом управления, гироскоп 2 с потенциометрической схемой служит измерительным устройством. Далее идут усилитель 5, приводной двигатель 4 с редуктором 5 (рулевая машинка) и, в качестве регулирующего органа, руль 6.

Гироскоп сохраняет неизменное направление в пространстве. Поэтому при отклонении самолета на угол от заданного курса движок, связанный

с гироскопом, смещается с нулевой точки. В результате на усилитель подается напряжение, пропорциональное углу отклонения Оно приводит в движение исполнительное устройство 3—5. При этом вследствие отклонения руля на угол самолет возвратится в требуемое положение (позднее будет показано, что одного сигнала гироскопа для управления самолетом недостаточно).

Аналогично устроены и два других канала автопилота.

Очевидно, что если с помощью автопилота надо поддерживать неизменный курс или надо разворачивать самолет по заданной программе, то данная система управления будет работать по общей схеме системы автоматического регулирования — либо в режиме стабилизации постоянной величины, либо в режиме программного регулирования. Если же самолет надо наводить на какую-либо цель, причем заданное направление (рис. 1.8) вместо гироскопа (или в дополнение к нему) определяется каким-нибудь визирующим цель устройством (оптическим или радиолокационным), то данная система управления будет работать как следящая система.

Рис. 1.8.

Аналогично обстоит дело и по каналу тангажа. В канале крена обычно имеет место автоматическая стабилизация нулевого угла крена. При этом каждый из трех каналов управления действует на свой руль (руль направления, руль высоты, элероны) у т. е. имеется три отдельных регулятора на одном объекте. Однако между ними часто вводятся еще перекрестные связи. Например, для улучшения поворота самолета по курсу полезно самолет несколько накренить. Поэтому полезно сигнал отклонения курса подавать не только на руль направления, но также и в канал крена (так называемый координированный разворот).

Кроме того, данная система автоматического управления полетом самолета может выполнять и некоторые другие функции, связанные со стабилизацией скорости и линии пути и с анализом обстановки на местности и в воздухе на основе обработки информации от разных измерителей на борту, от команд с земли и т. п.

Большое значение в технике управления имеют системы комбинированного действия с регулированием по возмущению (пунктирные линии на рис. 1.5). Все большую роль начинают играть адаптивные системы, т. е. самонастраивающиеся, самооптимизирующиеся и самоорганизующиеся системы, а также системы с переменной структурой, о которых будет идти речь во второй главе книги.

Для систем автоматического регулирования и для следящих систем (равно как и для всех замкнутых автоматических систем вообще) существуют практически единые методы динамических расчетов.

Большое различие в теорию систем вносят не только функциональные признаки, но и характер внутренних процессов: непрерывный — дискретный (импульсный), линейный — нелинейный и т. п. Этим объясняется и деление данной книги на соответствующие крупные разделы.

<< Предыдущий параграф Следующий параграф >>
Оглавление