Главная > Разное > Теория систем автоматического регулирования
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 11.3. Стационарные случайные процессы

Стационарным случайным процессом называется такой процесс, вероятностные характеристики которого не зависят от времени. Все плотности вероятностей не меняются при любом сдвиге рассматриваемого участка процесса во времени, т. е. при сохранении постоянной разности.

Рис. 11.13.

Можно сказать, что стационарный случайный процесс в какой-то мере аналогичен обычным стационарным или установившимся процессам в автоматических системах. Например, при рассмотрении обычных установившихся периодических колебаний ничего не изменится, если перенести начало отсчета на какую-нибудь величину. При этом сохранят свои значения такие характеристики, как частота, амплитуда, среднеквадратичное значение и т. п.

В стационарном случайном процессе закон распределения один и тот же для каждого момента времени, т. е. плотность вероятности не зависит от времени:

Отсюда получаем вдоль всего случайного процесса. Следовательно, в стационарном случайном процессе средняя линия, в отличие от общего случая (см. рис. 11.12), будет прямая (рис. 11.13), подобно постоянному смещению средней линии обычных периодических

колебаний. Рассеяние значений переменной х в стационарном случайном процессе, определяемое также будет все время одинаковым, подобно постоянному значению среднеквадратичного отклонения обычных установившихся колебаний от средней линии.

Аналогичным образом и двумерная плотность вероятности также будет «дна и та же для одного и того же промежутка времени — между любыми (рис. 11.13), т. е.

и также для -мерной плотности вероятности.

Задание всех этих функций распределения плотности определяет случайный процесс. Однако более удобно иметь дело с некоторыми осредненными и характеристиками процесса.

Прежде чем перейти к ним, отметим два важных для практики свойства.

1. Ограничиваясь только стационарными случайными процессами, можно будет определить только установившиеся (стационарные) динамические ошибки автоматических систем при случайных воздействиях. Такой прием применялся и ранее при рассмотрении регулярных воздействий, когда определялись динамические свойства систем регулирования по величине динамических ошибок в установившемся периодическом режиме.

2. Стационарные случайные процессы обладают замечательным свойством, которое известно под названием эргодической гипотезы.

Для стационарного случайного процесса с вероятностью, равной единице (т. е. практически достоверно), всякое среднее по множеству равно соответствующему среднему по времени, в частности

В самом деле, поскольку вероятностные характеристики стационарного случайного процесса с течением времени не меняются (например, то длительное наблюдение случайного процесса на одном объекте (среднее но времени) дает в среднем такую же картину, как и большое число наблюдений, сделанное в один и тот же момент времени на большом числе одинаковых объектов (среднее по множеству).

Для многих случаев существует математическое доказательство этого свойства. Тогда оно сводится к эргодической теореме.

Итак, среднее значение (математическое ожидание) для стационарного процесса будет

Аналогичным образом могут быть записаны моменты более высоких порядков — дисперсия, среднеквадратичное отклонение и т. п.

Эргодическая гипотеза позволяет сильно упрощать все расчеты и эксперименты. Она позволяет для определения вместо параллельного испытания многих однотипных систем в один и тот же момент времени, пользоваться одной кривой полученной при испытании одной системы в течение длительного времени.

Таким образом, важное свойство стационарного случайного процесса состоит в том, что отдельная его реализация на бесконечном промежутке времени полностью определяет собой весь случайный процесс со всеми бесчисленными возможными его реализациями. Этим свойством не обладает никакой другой тип случайного процесса.

<< Предыдущий параграф Следующий параграф >>
Оглавление