Главная > Разное > Теория систем автоматического регулирования
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 11.6. Канонические разложения случайных функций

Элементарной случайной функцией называется функция, которая может быть представлена в виде

где — некоторая известная неслучайная функция времени (синусоида, экспонента, степенная функция и т.

Если математическое ожидание величины х равно нулю, то и математическое ожидание случайной функции Корреляционная функция в этом случае

где дисперсия

Рассмотрим случайную функцию которая может быть представлена в виде суммы математического ожидания и элементарных случайных функций;

Здесь — случайные взаимно некоррелированные коэффициенты с нулевым математическим ожиданием.

Представление случайной функции в виде суммы ее математического ожидания и взаимно некоррелированных элементарных случайных функций называется каноническим разложением. Случайные коэффициенты носят название коэффициентов канонического разложения, а функции — координатных функций.

При использовании канонического разложения значительно упрощается выполнение различных операций над случайными функциями (дифференцирование, интегрирование, решение линейных дифференциальных уравнений и т. п.). Так, например, производная от (11.88) будет

Аналогичным образом интегрирование (11.88) дает

Для нахождения канонического разложения случайных функций существуют различные методы [108].

Из (11.88) может быть найдена корреляционная функция

Здесь дисперсии коэффициентов канонического разложения. Таким образом, корреляционная функция может быть выражена через те же координатные функции.

Для стационарной случайной функции, заданной в интервале — разность изменяется в интервале и разложение корреляционной функции может быть задано в виде ряда Фурье;

где — целые числа.

Этому выражению соответствует каноническое разложение самой случайной функции

где - взаимно некоррелированные случайные величины с нулевыми математическими ожиданиями и с одинаковыми дисперсиями . В разложении (11.92) должны отсутствовать нечетные гармоники. Тогда ряд (11.93) будет содержать только четные гармоники, что соответствует периоду (интервалу ).

Если разность между двумя соседними гармониками к нулю, что соответствует то формулу (11.92) можно представить в виде

Здесь введена спектральная плотность стационарного процесса (см. § 11.5)

являющаяся изображением Фурье корреляционной функции .

<< Предыдущий параграф Следующий параграф >>
Оглавление