Главная > Математика > Математика: Справ. материалы
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

8. Угол. Градусная мера угла.

Углом называется фигура, которая состоит из точки — вершины угла и двух различных полупрямых, исходящих из этой точки, — сторон угла (рис. 14). Если стороны угла являются дополнительными полупрямыми, то угол называется развернутым.

Угол обозначается либо указанием его вершины, либо указанием его сторон, либо указанием трех точек: вершины и двух точек на сторонах угла. Слово «угол» иногда заменяют

символом Угол на рисунке 14 можно обозначить тремя способами:

Говорят, что луч с проходит между сторонами угла если он исходит из его вершины и пересекает какой-нибудь отрезок с концами на сторонах угла.

На рисунке 15 луч с проходит между сторонами угла так как он пересекает отрезок

В случае развернутого угла любой луч, исходящий из его вершины и отличный от его сторон, проходит между сторонами угла.

Углы измеряются в градусах. Если взять развернутый угол и разделить его на 180 равных углов то градусная мера каждого из этих углов называется градусом.

Основные свойства измерения углов выражены в следующей аксиоме:

Каждый угол имеет определенную градусную меру, большую нуля. Развернутый угол равен 180°. Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.

Это значит, что если луч с проходит между сторонами угла то угол равен сумме углов

Градусная мера угла находится при помощи транспортира.

Угол, равный 90°, называется прямым углом. Угол, меньший 90°, называется острым углом. Угол, больший 90° и меньший 180°, называется тупым.

Сформулируем основное свойство откладывания углов.

От любой полупрямой в заданную полуплоскость можно отложить угол с заданной градусной мерой, меньшей 180°, и только один.

Рассмотрим полупрямую а. Продлим ее за начальную точку А. Полученная прямая разбивает плоскость на две полуплоскости. На рисунке 16 показано, как с помощью транспортира отложить от полупрямой а в верхнюю полуплоскость угол с данной градусной мерой 60°.

Т. 1. 2. Если от данной полупрямой отложить в одну полуплоскость два угла, то сторона меньшего угла, отличная от данной полупрямой, проходит между сторонами большего угла.

Пусть — углы, отложенные от данной полупрямой а в одну полуплоскость, и пусть угол меньше угла . В теореме 1. 2 утверждается, что луч проходит между сторонами угла (рис. 17).

Биссектрисой угла называется луч, который исходит из его вершины, проходит между сторонами и делит угол пополам. На рисунке 18 луч — биссектриса угла

В геометрии существует понятие плоского угла. Плоским углом называется часть плоскости, ограниченная двумя различными лучами, исходящими из одной точки. Эти лучи называются сторонами угла. Существуют два плоских угла с данными сторонами. Они называются дополнительными. На рисунке 19 заштрихован один из плоских углов со сторонами а и

Если плоский угол является частью полуплоскости, то его градусной мерой является градусная мера обычного угла с теми же сторонами. Если плоский угол содержит полуплоскость, то его градусная мера равна 360° — а, где а — градусная мера дополнительного плоского угла.

Пример. Между сторонами угла равного 120°, проходит луч с. Найти углы если их градусные меры относятся как

Решение. Луч а проходит между сторонами угла значит, по основному свойству измерения углов (см. п. 8)

Так как градусные меры относятся как то

<< Предыдущий параграф Следующий параграф >>
Оглавление