Главная > Математика > Математика: Справ. материалы
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

49. Призма. Параллелепипед. Куб.

Призмой называется многогранник, который состоит из двух плоских многоугольников, совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих многоугольников. Многоугольники называются основаниями призмы, а отрезки, соединяющие соответствующие вершины, — боковыми ребрами призмы (рис. 146).

Так как параллельный перенос есть движение, то основания призмы равны. Так как при параллельном переносе плоскость переходит в параллельную плоскость (или в себя), то

у призмы основания лежат в параллельных плоскостях. Так как при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то у призмы боковые ребра параллельны и равны.

На рисунке 147, а изображена четырехугольная призма Плоские многоугольники совмещаются соответствующим параллельным переносом и являются основаниями призмы, а отрезки являются боковыми ребрами призмы. Основания призмы равны (параллельный перенос есть движение и переводит фигуру в равную ей фигуру, п. 79). Боковые ребра параллельны и равны.

Поверхность призмы состоит из оснований и боковой поверхности. Боковая поверхность состоит из параллелограммов. У каждого из этих параллелограммов две стороны являются соответствующими сторонами оснований, а две другие — соседними боковыми ребрами призмы.

На рисунке 147, а боковая поверхность призмы состоит из параллелограммов Полная поверхность состоит из оснований и указанных выше параллелограммов.

Высотой призмы называется расстояние между плоскостями ее оснований. Отрезок, который соединяет две вершины, не принадлежащие одной грани, называется диагональю призмы. Диагональным сечением призмы называется сечение ее плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани.

На рисунке 147, а изображена призма — ее высота, — одна из ее диагоналей. Сечение является одним из диагональных сечений этой призмы.

Призма называется прямой, если ее боковые ребра перпендикулярны основаниям. В противном случае призма называется

наклонной. Прямая призма называется правильной, если ее основаниями являются правильные многоугольники.

На рисунке 147, а изображена наклонная призма, а на рисунке 147, б — прямая, здесь ребро перпендикулярно основаниям призмы. На рисунке 148 изображены правильные призмы, у них основаниями являются соответственно правильный треугольник, квадрат, правильный шестиугольник.

Если основания призмы — параллелограммы, то она называется параллелепипедом. У параллелепипеда все грани — параллелограммы. На рисунке 147, а изображен наклонный параллелепипед, а на рисунке 147, б — прямой.

Грани параллелепипеда, не имеющие общих вершин, называются противолежащими. На рисунке 147, а грани противолежащие.

Можно доказать некоторые свойства параллелепипеда.

Т.3.1. У параллелепипеда противоположные грани параллельны и равны.

Т.3.2. Диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам.

Точка пересечения диагоналей параллелепипеда является его центром симметрии.

Прямой параллелепипед, у которого основанием является прямоугольник, называется прямоугольным параллелепипедом. У прямоугольного параллелепипеда все грани — прямоугольники.

Прямоугольный параллелепипед, у которого все ребра равны, называется кубом.

Длины непараллельных ребер прямоугольного параллелепипеда называются его линейными размерами или измерениями. У прямоугольного параллелепипеда три линейных размера.

Для прямоугольного параллелепипеда верна такая теорема:

Т.3.3. В прямоугольном параллелепипеде квадрат любой диагонали равен сумме квадратов трех его линейных размеров.

Например, в кубе (рис. 149) с ребром а диагонали равны:

<< Предыдущий параграф Следующий параграф >>
Оглавление