Главная > Математика > Математика: Справ. материалы
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 13. Изображение пространственных фигур на плоскости

55. Параллельная проекция.

Для изображения пространственных фигур на плоскости обычно пользуются параллельным проектированием. Этот способ изображения фигуры состоит в следующем. Берем произвольную прямую пересекающую плоскость, на которую проектируется данная фигура, и проводим через произвольную точку А фигуры прямуй), параллельную I. Точка переселения этой прямой с плоскостью чертежа будет изображением точки А.

На рисунке 172 изображена параллельная проекция фигуры F на плоскость а.

Такой способ изображения пространственной фигуры на плоскости соответствует зрительному восприятию фигуры при рассмотрении ее издали.

Параллельную проекцию некоторого объекта в природе представляет, например, его тень, падающая на плоскую поверхность земли при солнечном освещении (лучи солнца можно считать параллельными). На рисунке 173 изображена параллельная проекция рамы окна, освещенной солнечными лучами, на плоскость пола.

Из описанного построения изображения фигуры вытекают некоторые свойства этого изображения (изображаемые отрезки и прямые не параллельны направлению проектирования).

1. Проекция прямой есть прямая.

2. Проекция отрезка есть отрезок.

На рисунке 174 отрезок проектируется на плоскость а. Все прямые, проектирующие точки отрезка лежат в одной плоскости, пересекающей плоскость чертежа по прямой Произвольная точка В отрезка изображается точкой отрезка Отрезок есть проекция отрезка на плоскость а. Еще раз отметим, что это утверждение справедливо, если проектируемый отрезок не параллелен направлению проектирования.

3. Параллельные отрезки фигуры изображаются на плоскости чертежа параллельными отрезками или отрезками, лежащими на одной прямой.

параллельные отрезки фигуры. Прямые АС и параллельны, так как они получаются в пересечении параллельных плоскостей с плоскостью а. Первая из этих плоскостей проходит через прямые вторая — через прямые Таким образом параллельные отрезки переходят в параллельные отрезки

4. Отношение отрезков одной прямой или параллельных прямых сохраняется при параллельном проектировании.

Например, (рис. 174).

<< Предыдущий параграф Следующий параграф >>
Оглавление