Главная > Математика > Математика: Справ. материалы
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

52. Многочлены. Приведение многочленов к стандартному виду.

Многочленом называют сумму одночленов. Если все члены многочлена записать в стандартном виде (см. п. 51) и выполнить приведение подобных членов, то получится многочлен стандартного вида.

Всякое целое выражение можно преобразовать в многочлен стандартного вида — в этом состоит цель преобразований (упрощений) целых выражений.

Рассмотрим примеры, в которых целое выражение нужно привести к стандартному виду многочлена.

Пример

Решение. Сначала приведем к стандартному виду члены многочлена. Получим После приведения подобных членов получим многочлен стандартного вида

Пример

Решение. Если перед скобками стоит знак «плюс», то скобки можно опустить, сохранив знаки всех слагаемых, заключенных в скобки. Воспользовавшись этим правилом раскрытия скобок, получим:

и далее

Пример

Решение. Если перед скобками стоит знак «минус», то скобки можно опустить, изменив знаки всех слагаемых, заключенных в скобки. Воспользовавшись этим правилом раскрытия скобок, получим:

Пример .

Решение. Произведение одночлена и многочлена согласно распределительному закону равно сумме произведений этого одночлена и каждого члена многочлена. Получаем Пример 5.

Решение. Имеем

Пример

Решение. Имеем

Осталось привести подобные члены (они подчеркнуты). Получим:

<< Предыдущий параграф Следующий параграф >>
Оглавление