Главная > Моделирование, обработка сигналов > Методы и техника обработки сигналов при физических измерениях, Т.2
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

Глава 17. СОГЛАСОВАННАЯ ФИЛЬТРАЦИЯ

17.1. Оптимальная фильтрация

Пусть — известный импульсный сигнал конечной длительности Т. Предположим, что на наложен шум который считается не зависящим от и стационарным порядка. Представим сигнал в виде

Часто встречающаяся проблема состоит в следующем: определить с помощью линейного фильтра (т. е. посредством временного разложения или частотного фильтра) тот момент, когда появляется Эта задача такая же, как задача обнаружения сигнала на фоне шума. Критерием, которым пользуются при выборе фильтра, является отношение сигнала к максимальному шуму.

Мы предположим (для упрощения последующих вычислений), что сигнал появляется в момент и длится от 0 до Т; так как шум считается стационарным, такое предположение относительно момента появления сигнала не может повлиять на результаты. Требуется отыскать фильтр, обеспечивающий в момент Т максимум отношения сигнал/шум. Это отношение определяется как отношение энергии сигнала к энергии шума на интервале длительностью Т.

Пусть — импульсная функция отклика фильтра; если на вход подан сигнал то на выходе этого фильтра в момент Т имеем

На выходе фильтра при воздействии шума

Оценим квадрат модуля

Оценка представляет собой мощность сигнала в момент . Квадрат модуля равен

и средняя мощность шума в момент

Отношение сигнал/шум в момент Т определяется тогда выражением

Это отношение остается неизменным, если вместо импульсного отклика брать Следовательно, можно ввести нормировку в виде условия т. е.

Необходимо найти при котором достигает максимума

Используя выражение (17.5), найдем, что величина

отрицательна или равна нулю; она равна нулю для Вычислим с помощью метода вариации.

Приравняем нулю первую вариацию К по

Что дает

Принимая во внимание условие (17.6), запишем

где

Последнее выражение представляет собой уравнение для оптимального фильтра.

<< Предыдущий параграф Следующий параграф >>
Оглавление