Главная > Моделирование, обработка сигналов > Методы и техника обработки сигналов при физических измерениях, Т.2
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

22.4. Балансировка ротационных машин

Основные положения.

Ротационные машины имеют ротор и статор. Статор иногда называют каркасом. Ротор сочленен с каркасом с помощью некоторых связей, которые обеспечивают его вращение. В общем случае связующим элементом являются жидкости, газы (масло, воздух, вода...) или магнитное поле. В классическом случае эта связь представляет собой подшипник. Обычно центр масс ротора не лежит на его оси вращения. Элементарный эксцентриситет — это отсчитанное по нормали к оси расстояние между осью и центром масс элемента ротора, заключенного между двумя бесконечно близкими плоскостями, перпендикулярными к оси. Элементарный разбаланс равен

(кликните для просмотра скана)

(кликните для просмотра скана)

произведению элементарного эксцентриситета на элементарную массу

Вследствие разбаланса возникают силы инерции, обусловленные центростремительным ускорением. Эти силы порождают вибрации. Если — угловая скорость вращения, элементарная сила инерции (центробежная сила) определяется выражением

Балансировка представляет собой процедуру подбора таких балансиров-корректоров, установка которых приводит к допустимым (меньше некоторых предельных значений) величинам амплитуд и модулей, определяющих вибрации. Балансиры-корректоры размещаются в так называемых плоскостях балансировки, перпендикулярных оси ротора. Балансировка производится:

• с помощью специальных механизмов, называемых балансировочными; они обычно размещаются на окружности обрабатываемой или опорной поверхности роторов;

• на машине в условиях, близких к условиям ее нормальной эксплуатации (балансировка на месте).

Балансировка и обработка сигналов.

Вибрации оцениваются путем измерения некоторых величин, таких, как перемещение, скорость перемещения, сила (чаще измеряется скорость перемещения; она используется в международных нормативах и во французских Обычно измерению этих величин мешают шумы, т. е. паразитные (в смысле балансировки) сигналы, частота которых не равна частоте вращения. Следовательно, необходима их фильтрация. Кроме того (в частности, для балансировки с использованием специальных механизмов), подбор балансиров-корректоров в выбранной плоскости упрощается за счет некоторых простых операций над измеряемыми величинами. Эти операции могут быть выполнены и для других плоскостей балансировки. Для осуществления балансировки на месте в мини-ЭВМ, получающую информацию об измеряемых величинах, вводят некоторый сложный алгоритм.

Обработка сигналов.

Ваттметрическая фильтрация. Пусть вибрация описывается сигналом с периодом Разложение в ряд Фурье сигнала запишется следующим образом:

С помощью генератора переменного напряжения, вращающегося вместе с ротором с угловой скоростью (задающего

генератора), можно получить опорный сигнал

(Для этого может использоваться импульсный датчик, сигналы которого фильтруются в узкой полосе частот.) На основе сигнала формируется сигнал

Умножая на и отдельно на и интегрируя произведения, получим

Таким образом, зная по значениям рассчитываются коэффициенты основной гармоники. Отметим, что

где — составляющая в фазе, — составляющая с фазовым сдвигом Эти составляющие используются для фиксации в определенном месте экрана осциллографа пятна, с помощью которого можно непосредственно наблюдать модуль или фазу .

Для устранения ошибок при интегрировании необходимо, чтобы время интегрирования (заменяющее Т в выражениях для ) определялось неравенством Для Гц имеем 0,3 с. Практически это условие не влечет за собой каких-либо ограничений, поскольку сигналы являются стационарными.

Рассмотренный метод измерения мощности ваттметром был предложен для балансировки более 40 лет назад.

Замечание. Вырабатываемый задающим генератором сигнал является основой для расчета фазового сдвига В. Некоторые конструкторы используют стробоскоп, управляемый сигналами вибрации. Вспышка стробоскопа изображает ротор в некотором положении, которое определяет фазовый сдвиг. Стробоскоп позволяет обойтись без задающего генератора, но требует, чтобы при наблюдении была видна одна и та же часть поверхности

ротора. Отметим, что обработка сигналов с целью расчета угла в этом случае весьма своеобразна.

Непосредственная фильтрация. Сигналы поступают на входы фильтров, ширина полосы пропускания которых мала (например, 5—10 Гц). Центральная частота полосы равна частоте вращения. Она может устанавливаться автоматически, когда скорость вращения не постоянна. Такой фильтр называют «следящим фильтром». Для того чтобы составляющие (модуль и фаза) сигнала на выходе фильтра были очень близки к составляющим сигнала на входе, необходимо, чтобы модуль градиента скорости вращения (ускорение или замедление) был мал и тем меньше, чем меньше ширина полосы. Это условие должно быть проверено экспериментально, особенно во время балансировки на месте, для которой часто представляет интерес регистрация сигналов в момент, когда машина замедляет движение. Сигнал, который несет информацию и служит опорным (см. выражение (22.10), тоже можно фильтровать. В общем случае необходимо использовать фильтры с хорошо известными передаточными функциями, в частности с известными фазовыми искажениями, которые они вносят.

Изохронная передаточная функция и ваттметрическая фильтрация. Пусть - сигнал, который описывает вибрацию, и — опорный сигнал, полученный от задающего генератора. Найдем

где — период и — число циклов интегрирования.

Введем переменную Тогда

Учитывая, что получим

Положим при Тогда

По теореме Планшереля переходим к преобразованию Фурье

где

или

Модуль запишется следующим образом:

Для имеем Следовательно, Можно всегда положить Кроме того, с увеличением модуль быстро уменьшается.

Таким образом, умножение сигнала на и интегрирование в пределах соответствуют фильтрации сигнала, и тем более селективной, чем больше Аналогичным образом можно было бы умножить на и интегрировать в пределах

Приведенные математические выражения показывают, что ваттметрическую фильтрацию можно рассматривать как свертку с помощью фильтра, передаточная функция которого равна

Качественное описание конструкций.

Пусть имеется конструкция, способная вибрировать. Рассмотрим точек на этой конструкции и в каждой точке направление колебаний и приложенную силу. С целью обобщения можно рассматривать два или три направления в каждой точке. Полагая упругие характеристики конструкции линейными и затухание колебаний вязким затуханием (предположение, которое должно быть проверено), можно написать следующее соотношение:

— матрица массы порядка — матрица затухания порядка - матрица жесткости порядка — матрица перемещений порядка - матрица

приложенных сил порядка число рассматриваемых направлений.

Применение преобразования Лапласа к соотношению (22.17) приводит к уравнению

где

есть матрица передаточной функции порядка . Матрицу изохронной передаточной функции можно получить из заменой Эту матрицу можно получить непосредственно, применяя преобразование Фурье к выражению (22.17).

Из выражения (22.18) также следует, что Связь между преобразованиями Лапласа и Фурье рассмотрена в гл. 4.

Матрицы и содержат характеристики, которые позволяют по точкам и выбранным в них направлениям описать вибрации конструкции; поэтому соотношение (22.17) представляет собой описание конструкции, иногда называемое «модельным». Матрицы W и У содержат собственные частоты и моды конструкции. Собственные частоты могут быть комплексными. Собственные моды, вычисленные по движению точек, могут содержать узловые точки, т. е. точки, амплитуда колебаний которых для определенных собственных частот равна нулю.

Качественное описание является следствием некоторой теоретико-экспериментальной процедуры, с помощью которой находят коэффициенты, позволяющие рассчитать собственные частоты и моды. В указанной процедуре используют результаты экспериментального определения коэффициентов матрицы Это определение осуществляется с помощью возбуждений (сил), которые могут быть случайными (шумы в некоторой полосе частот), переходными (удары) и гармоническими (синусоидальные колебания).

Коэффициент соответствующий строке и столбцу матрицы V, рассчитывается с помощью преобразования Фурье коэффициента матрицы и коэффициента матрицы другие коэффициенты этой матрицы, кроме равны нулю в определенной фазе эксперимента. Таким образом,

где представляет собой взаимный спектр мощности для составляющей матрицы и составляющей матрицы а

- автоспектр мощности для составляющей матрицы

Спектры обычно вычисляются с помощью преобразования Фурье временных сигналов При этом используются:

• усреднение спектров для уменьшения влияния шумов;

• функция когерентности, позволяющая признать результаты удовлетворительными, когда она больше 0,7 или 0,8 (ее асимптотическое значение равно 1);

• повышение качества анализа спектров за счет эффекта трансфокатора (эффект лупы) (разд. 12.7).

Если матрица V определена, то с помощью теоретической процедуры, алгоритм которой введен в ЭВМ, рассчитываются собственные частоты и моды. Существуют системы, которые обрабатывают сигналы и реализуют расчеты.

Качественное описание позволяет произвести проверку теоретического (модельного) описания конструкции. После того как теоретическое описание признано правильным, расчеты на ЭВМ дают возможность предсказать поведение конструкции при механических воздействиях известного вида и, следовательно, оценить надежность конструкции и влияние некоторых модификаций ее элементов.

При существенных модификациях экспериментальная фаза качественного описания позволяет следить за коэффициентами матрицы и в случае необходимости корректировать их. Желательно регулярно проводить проверку правильности описания, исследуя экспериментально влияние на конструкцию некоторых сил, по отношению к которым ответная реакция уже была рассчитана.

ЛИТЕРАТУРА

(см. скан)

<< Предыдущий параграф Следующий параграф >>
Оглавление