Главная > Математика > Математический анализ. (Виленкин)
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 2. Сложные вероятности. Теоремы сложения и умножения. Условные вероятности

Непосредственный подсчет случаев, благоприятствующих данному событию, может оказаться затруднительным. Поэтому для определения вероятности события бывает выгодно представить данное событие в виде комбинации некоторых других, более простых событий. При этом, однако, надо знать правила, которым подчиняются вероятности при комбинации событий. Именно к этим правилам и относятся упомянутые в названии параграфа теоремы.

Первая из них относится к подсчету вероятности того, что осуществится хотя бы одно из нескольких событий.

Теорема сложения.

Пусть А и В — два несовместных события. Тогда вероятность того, что осуществится хотя бы одно из этих двух событий, равна сумме их вероятностей:

Доказательство. Пусть — полная группа попарно несовместных событий. Если то среди этих элементарных событий имеется ровно событий, благоприятствующих А, и ровно событий, благоприятствующих В. Так как события А и В несовместны, то никакое из событий не может благоприятствовать обоим этим событиям. Событию (А или В), состоящему в том, что наступает хотя бы одно из этих двух событий, благоприятствует, очевидно, как каждое из событий благоприятствующих А, так и каждое из событий

благоприятствующих В. Поэтому общее число событий, благоприятствующих событию (А или В), равно сумме откуда следует:

что и требовалось доказать

Нетрудно видеть, что теорема сложения, сформулированная выше для случая двух событий, легко переносится на случай любого конечного числа их. Именно если попарно несовместные события, то

Для случая трех событий, например, можно написать

откуда уже вытекает наше утверждение. Далее следует воспользоваться методом математической индукции.

Важным следствием теоремы сложения является утверждение: если события попарно несовместны и единственно возможны, то

Действительно, событие или или или по предположению достоверно и его вероятность, как было указано в § 1, равна единице. В частности, если означают два взаимно противоположных события, то

Проиллюстрируем теорему сложения примерами.

Пример 1. При стрельбе по мишени вероятность сделать отличный выстрел равна 0,3, а вероятность сделать выстрел на оценку «хорошо» равна 0,4. Какова вероятность получить за сделанный выстрел оценку не ниже «хорошо»?

Решение. Если событие А означает получение оценки «отлично», а событие В — получение оценки «хорошо», то

Пример 2. В урне, содержащей шаров белого, красного и черного цвета, находятся белых шаров и I красных. Какова вероятность вынуть шар не черного цвета?

Решение. Если событие А состоит в появлении белого, а событие В — красного шара, то появление шара не черного цвета

означает появление либо белого, либо красного шара. Так как по определению вероятности

то по теореме сложения вероятность появления шара не черного цвета равна;

Эту задачу можно решить и так. Пусть событие С состоит в появлении черного шара. Число черных шаров равно так что Р (С) Появление шара не черного цвета является противоположным событием С, поэтому на основании указанного выше следствия из теоремы сложения имеем:

как и раньше.

Пример 3. В денежно-вещевой лотерее на серию в 1000 билетов приходится 120 денежных и 80 вещевых выигрышей. Какова вероятность какого-либо выигрыша на один лотерейный билет?

Решение. Если обозначить через А событие, состоящее в выпадении денежного выигрыша и через В — вещевого, то из определения вероятности следует

Интересующее нас событие представляет (А или В), поэтому из теоремы сложения вытекает

Таким образом, вероятность какого-либо выигрыша равна 0,2.

Прежде чем перейти к следующей теореме, необходимо ознакомиться с новым важным понятием — понятием условной вероятности. Для этой цели мы начнем с рассмотрения следующего примера.

Пусть на складе имеется 400 электрических лампочек, изготовленных на двух различных заводах, причем на первом изготовлено 75% всех лампочек, а на втором — 25%. Допустим, что среди лампочек, изготовленных первым заводом, 83% удовлетворяют условиям определенного стандарта, а для продукции второго завода этот процент равен 63. Определим вероятность того, что случайно взятая со склада лампочка окажется удовлетворяющей условиям стандарта.

Заметим, что общее число имеющихся стандартных лампочек состоит из лампочек, изготовленных первым

заводом, и 63 лампочек, изготовленных вторым заводом, то есть равно 312. Так как выбор любой лампочки следует считать равновозможным, то мы имеем 312 благоприятствующих случаев из 400, так что

где событие В состоит в том, что выбранная нами лампочка стандартна.

При этом подсчете не делалось никаких предположений о том, к продукции какого завода принадлежит выбранная нами лампочка. Если же какие-либо предположения такого рода сделать, то очевидно, что интересующая нас вероятность может измениться. Так, например, если известно, что выбранная лампочка изготовлена на первом заводе (событие А), то вероятность того, что она стандартна, будет уже не 0,78, а 0,83.

Такого рода вероятность, то есть вероятность события В при условии, что имеет место событие А, называют условной вероятностью события В при условии наступления события А и обозначают

Если мы в предыдущем примере обозначим через А событие, состоящее в том, что выбранная лампочка изготовлена на первом заводе, то мы можем написать

Теперь мы можем сформулировать важную теорему, относящуюся к подсчету вероятности совмещения событий.

Теорема умножения.

Вероятность совмещения событий А и В равна произведению вероятности одного из событий на условную вероятность другого в предположении, что первое имело место:

При этом под совмещением событий А и В понимается наступление каждого из них, то есть наступление как события А, так и события В.

Доказательство. Рассмотрим полную группу из равновозможных попарно несовместных событий каждое из которых может быть благоприятствующим или неблагоприятствующим как для события А, так и для события В.

Разобьем все эти события на четыре различные группы следующим образом. К первой группе отнесем те из событий которые благоприятствуют и событию А, и событию В; ко второй и третьей группам отнесем такие события которые благоприятствуют одному из двух интересующих нас событий и не благоприятствуют другому, например ко второй группе — те, которые благоприятствуют А, но не благоприятствуют В, а к третьей — те, которые благоприятствуют В, но не благоприятствуют А; наконец, к

четвертой группе отнесем те из событий которые не благоприятствуют ни А, ни В.

Так как нумерация событий не играет роли, то можно предположить, что это разбиение на четыре группы выглядит так:

I группа:

II группа:

III группа:

IV группа:

Таким образом, среди равновозможных и попарно несовместных событий имеется событий, благоприятствующих и событию А, и событию В, I событий, благоприятствующих событию А, но не благоприятствующих событию событий, благоприятствующих В, но не благоприятствующих А, и, наконец, событий, не благоприятствующих ни А, ни В.

Заметим, между прочим, что какая-либо из рассмотренных нами четырех групп (и даже не одна) может не содержать ни одного события. В этом случае соответствующее число, означающее количество событий в такой группе, будет равно нулю.

Произведенная нами разбивка на группы позволяет сразу написать

ибо совмещению событий А и В благоприятствуют события первой группы и только они. Общее число событий, благоприятствующих А, равно общему числу событий в первой и второй группах, а благоприятствующих В — общему числу событий в первой и третьей группах.

Подсчитаем теперь вероятность то есть вероятность события В при условии, что событие А имело место. Теперь события, входящие в третью и четвертую группы, отпадают, так как их появление противоречило бы наступлению события А, и число возможных случаев оказывается равным уже не . Из них событию В благоприятствуют лишь события первой группы, так что мы получаем:

Для доказательства теоремы достаточно теперь написать очевидное тождество:

и заменить в нем все три дроби вычисленными выше вероятностями. Мы придем к утверждавшемуся в теореме равенству:

Ясно, что написанное нами выше тождество имеет смысл лишь при что справедливо всегда, если только А не есть невозможное событие.

Так как события А и В равноправны, то, поменяв их местами, получим другую форму теоремы умножения:

Впрочем, это равенство можно получить тем же путем, что и предыдущее, если заметить, что воспользоваться тождеством

Сравнивая правые части двух выражений для вероятности Р(А и В), получим полезное равенство:

Рассмотрим теперь примеры, иллюстрирующие теорему умножения.

Пример 4. В продукции некоторого предприятия признаются годными (событие А) 96% изделий. К первому сорту (событие В) оказываются принадлежащими 75 изделий из каждой сотни годных. Определить вероятность того, что произвольно взятое изделие будет годным и принадлежит к первому сорту.

Решение. Искомая вероятность есть вероятность совмещения событий А и В. По условию имеем: . Поэтому теорема умножения дает

Пример 5. Вероятность попадания в цель при отдельном выстреле (событие А) равна 0,2. Какова вероятность поразить цель, если 2% взрывателей дают отказы (т. е. в 2% случаев выстрела не

Решение. Пусть событие В состоит в том, что выстрел произойдет, а В означает противоположное событие. Тогда по условию и согласно следствию из теоремы сложения . Далее, по условию .

Поражение цели означает совмещение событий А и В (выстрел произойдет и даст попадание), поэтому по теореме умножения

Важный частный случай теоремы умножения можно получить, если воспользоваться понятием независимости событий.

Два события называются независимыми, если вероятность одного из них не изменяется в результате того, наступило или не наступило другое.

Примерами независимых событий являются выпадение различного числа очков при повторном бросании игральной кости или той или иной стороны монет при повторном бросании монеты, так как очевидно, что вероятность выпадения герба при втором бросании равна независимо от того, выпал или не выпал герб в первом.

Аналогично, вероятность вынуть во второй раз белый шар из урны с белыми и черными шарами, если вынутый первым шар предварительно возвращен, не зависит от того, белый или черный шар был вынут в первый раз. Поэтому результаты первого и второго вынимания независимы между собой. Наоборот, если шар, вынутый первым, не возвращается в урну, то результат второго вынимания зависит от первого, ибо состав шаров, находящихся в урне после первого вынимания, меняется в зависимости от его исхода. Здесь мы имеем пример зависимых событий.

Пользуясь обозначениями, принятыми для условных вероятностей, можно записать условие независимости событий А и В в виде

Воспользовавшись этими равенствами, мы можем привести теорему умножения для независимых событий к следующей форме.

Если события А и В независимы, то вероятность их совмещения равна произведению вероятностей этих событий:

Действительно, достаточно в первоначальном выражении теоремы умножения положить , что вытекает из независимости событий, и мы получим требуемое равенство.

Рассмотрим теперь несколько событий: Будем называть их независимыми в совокупности, если вероятность появления любого из них не зависит от того, произошли ли какие-либо другие рассматриваемые события или нет

В случае событий, независимых в совокупности, теорема умножения может быть распространена на любое конечное число их, благодаря чему ее можно сформулировать так:

Вероятность совмещения событий независимых в совокупности, равна произведению вероятностей этих событий:

Пример 6. Рабочий обслуживает три автоматических станка, к каждому из которых нужно подойти для устранения неисправности, если станок остановится. Вероятность того, что первый станок не остановится в течение часа, равна 0,9. Та же вероятность для второго станка равна 0,8 и для третьего — 0,7. Определить вероятность того, что в течение часа рабочему не потребуется подойти ни к одному из обслуживаемых им станков.

Решение. Если считать станки работающими независимо друг от друга, то в силу теоремы умножения искомая вероятность совмещения трех событий равна произведению

Пример 7. Вероятность сбить самолет винтовочным выстрелом Какова вероятность уничтожения неприятельского самолета при одновременной стрельбе из 250 винтовок?

Решение. Вероятность того, что при одиночном выстреле самолет не будет сбит, по теореме сложения равна Тогда можно подсчитать с помощью теоремы умножения вероятность того, что самолет не будет сбит при 250 выстрелах, как вероятность совмещения событий. Она равна После этого мы можем снова воспользоваться теоремой сложения и найти вероятность того, что самолет будетсбит, как вероятность противоположного события

Отсюда видно, что, хотя вероятность сбить самолет одиночным винтовочным выстрелом ничтожно мала, тем не менее при стрельбе из 250 винтовок вероятность сбить самолет оказывается уже весьма ощутимой. Она существенно возрастает, если число винтовок увеличить. Так, при стрельбе из 500 винтовок вероятность сбить самолет, как легко подсчитать, равна при стрельбе из 1000 винтовок — даже .

Доказанная выше теорема умножения позволяет несколько расширить теорему сложения, распространив ее на случай совместимых событий. Ясно, что если события А и В совместимы, то вероятность наступления хотя бы одного из них не равна сумме их вероятностей. Например, если событие А означает выпадение четного

числа очков при бросании игральной кости, а событие В — выпадение числа очков, кратного трем, то событию (А или В) благоприятствует выпадение 2, 3, 4 и 6 очков, то есть

С другой стороны, то есть . Таким образом, в этом случае

Отсюда видно, что в случае совместимых событий теорема сложения вероятностей должна быть изменена. Как мы сейчас увидим, ее можно сформулировать таким образом, чтобы она была справедлива и для совместимых, и для несовместных событий, так что ранее рассмотренная теорема сложения окажется частным случаем новой.

Расширенная теорема сложения.

Пусть А и В — произвольные события. Вероятность того, что осуществится хотя бы одно из этих двух событий, равна сумме их вероятностей без вероятности их совмещения:

Доказательство. Пусть — полная группа попарно несовместных событий. Если то событию А благоприятствует из элементарных событий. Допустим, что среди них есть событий, благоприятствующих также и событию ему не благоприятствуют. Тогда среди элементарных событий имеется ровно событий, благоприятствующих и А и В. Поэтому если , то среди событий, благоприятствующих В, имеется событий, благоприятствующих событий, которые А не благоприятствуют.

Все элементарные события, которые благоприятствуют событию (А или В), должны благоприятствовать либо только А, либо только В, либо и А и В. Таким образом, общее число таких событий равно

а вероятность

что и требовалось доказать.

Применяя формулу (9) к рассмотренному выше примеру выпадения числа очков при бросании игральной кости, получим:

что совпадает с результатом непосредственного подсчета.

Очевидно, что формула (1) является частным случаем (9). Действительно, если события А и В несовместны, то и вероятность совмещения

Примере. В электрическую цепь включены последовательно два предохранителя. Вероятность выхода из строя первого предохранителя равна 0,6, а второго 0,2. Определим вероятность прекращения питания в результате выхода из строя хотя бы одного из этих предохранителей.

Решение. Так как события А и В, состоящие в выходе из строя первого и второго из предохранителей, совместимы, то искомая вероятность определится по формуле (9):

Упражнения

(см. скан)

<< Предыдущий параграф Следующий параграф >>
Оглавление