Главная > Математика > Математический анализ. (Виленкин)
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

10. Геометрическая интерпретация решения систем двух уравнений с двумя неизвестными.

Мы уже знаем, что решение системы двух уравнений с двумя неизвестными

геометрически истолковывается как отыскание точек пересечения двух линий. Этим можно воспользоваться для приближенного решения системы уравнений. Именно, если изобразить линии мы сможем найти координаты точек пересечения этих линий и тем самым значения неизвестных. Поскольку линии чертятся лишь приближенно, мы получаем не точные, а приближенные значения решений системы. Тем не менее, решая графически систему, мы можем узнать, сколько она имеет решений, и, хотя бы грубо, найти приближенные значения этих решений.

При графическом решении систем уравнений мы сталкиваемся с различными кривыми. В курсе геометрии были выведены уравнения прямой, окружности, параболы, гиперболы и эллипса. В дальнейшем мы будем пользоваться этими кривыми.

Рассмотрим некоторые примеры систем уравнений.

Пусть дана система

Выразив из уравнения (2) у через х и подставив в первое уравнение, получаем квадратное уравнение:

Его корни

Подставив их во второе уравнение, получаем:

Итак, система имеет два решения:

Построим теперь линии, выражаемые уравнениями (1) и (2). Уравнение (1) — это уравнение параболы которая получается из параболы сдвигом на 2 единицы влево вдоль оси абсциссы. Уравнение же (2) выражает прямую линию . Рис. 13 дает геометрическое изображение нашей системы. Мы видим из рисунка, что парабола и прямая пересекаются в двух точках в соответствии с полученным аналитическим путем решением.

Парабола может иметь с прямой линией не две, а одну точку пересечения и даже не иметь ни одной точки пересечения.

Возьмем систему уравнений:

Ее единственное решение:

Рис. 13

(кликните для просмотра скана)

Рис. 16

не имеет ни одного решения — здесь прямая и парабола не пересекаются (см. рис. 16).

Теперь рассмотрим систему, геометрический смысл которой заключается в отыскании точек пересечения прямой и гиперболы. Пусть система имеет вид:

Решая ее способом подстановки, находим решения:

Эти же решения получаются графическим способом (см. рис. 17). Однако следует иметь в виду, что графический способ дает лишь приближенные значения корней и, решая систему (6) графически, мы не можем быть уверены, что решение имеет вид , а не, например, .

Как и в случае параболы, может случиться, что прямая имеет не две, а меньше общих точек с гиперболой.

Перейдем к системам, в которых оба уравнения имеют вторую степень. Можно доказать, что такие системы уравнений имеют не более четырех решений.

Вообще можно доказать, что система двух уравнений с двумя неизвестными такая, что первое уравнение имеет степень а второе — степень имеет не более решений.

Рассмотрим, например, систему:

Первое из этих уравнений представляет параболу с осью, параллельной оси ординат, а второе — параболу с осью, параллельной оси абсцисс (см. рис. 18). Из рисунка видно, что эти параболы пересекаются в четырех точках. Чтобы найти координаты точек

Рис. 17 (см. скан)

пересечения, решим эту систему методом алгебраического сложения. Именно, вычтем из уравнения (8) уравнение (7). Мы получим равносильную систему уравнений:

Эта система равносильна совокупности систем:

Рис. 18

Обе системы этой совокупности решаются методом подстановки. Мы получаем при этом следующие решения заданной системы:

Система уравнений

тоже имеет четыре решения. Она выражает задачу об отыскании точек пересечения окружности и гиперболы (см. рис. 19). Чтобы решить эту систему, надо прибавить к первому уравнению удвоенное второе уравнение.

В некоторых случаях получается меньше чем четыре решения системы. Например, система

имеет два решения. Она выражает задачу об отыскании точек пересечения параболы и окружности (рис. 20).

Столько же решений имеет система

(пересечение двух окружностей) (рис. 21).

Упражнения

(см. скан)

(кликните для просмотра скана)

(кликните для просмотра скана)

<< Предыдущий параграф Следующий параграф >>
Оглавление