Главная > Теория автоматического управления > Теория автоматического управления, Ч.I (Воронов А.А.)
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

Оптимальное управление.

Оптимальное управление в последние годы начали применять как в технических системах для повышения эффективности производственных процессов, так и в системах организационного управления для совершенствования деятельности предприятий, организаций, отраслей народного хозяйства.

В организационных системах обычно интересуются конечным, установившимся результатом команды, не исследуя

Рис. 1.10.

эффективность во время переходного процесса между отдачей команды и получением окончательного результата Объясняется это тем, что обычно в таких системах потери в переходном процессе достаточно малы и влияют несущественно на общую величину выигрыша в установившемся режиме, поскольку сам установившийся режим значительно более длителен, чем переходный процесс. Но иногда динамика не исследуется из-за математических трудностей. Методам оптимизации конечных состояний в организационных и экономических системах посвящены курсы методов. оптимизации и исследования операций.

В управлении динамическими техническими системами оптимизация часто существенна именно для переходных процессов, в которых показатель эффективности зависит не только от текущих значений координат (как в экстремальном управлении), но и от характера изменения в прошлом, настоящем и будущем, и выражается некоторым функционалом от координат, их производных и, может быть, времени.

В качестве примера можно привести управление бегом спортсмена на дистанции. Так как его запас энергии ограничен физиологическими факторами, а расходование запаса зависит от характера бега, спортсмен уже не может в каждый момент отдавать максимум возможной мощности, чтобы не израсходовать запас энергии преждевременно и не выдохнуться на дистанции, а должен искать оптимальный для своих особенностей режим бега.

Нахождение оптимального управления в подобных динамических задачах требует решения в процессе управления достаточно сложной математической задачи методами вариационного исчисления или математического программирования в зависимости от вида математического описания (математической модели) системы. Таким образом, органической составной частью системы оптимального управления становится счетно-решающее устройство или вычислительная машина. Принцип поясняется на рис. 1.10. На вход вычислительного устройства (машины) ВМ поступает информация о текущих значениях координат х с выхода объекта О, об управлениях и с его входа, о внешних воздействиях z на объект, а также задание извне различных условий: значение критерия оптимальности граничных условий информация о допустимых значениях Вычислительное

устройство по заложенной в него программе вычисляет оптимальное управление и. Оптимальные системы могут быть как разомкнутыми, так и замкнутыми.

<< Предыдущий параграф Следующий параграф >>
Оглавление