Главная > Теория автоматического управления > Теория автоматического управления, Ч.I (Воронов А.А.)
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 1.2. Фундаментальные принципы управления

Зная статические и динамические свойства управления системы, можно построить математическую модель системы и найти такой алгоритм управления, который обеспечивает заданный алгоритм функционирования при известных, заданных воздействиях. Однако модель всегда приближенно выражает свойства оригинала, а возмущающие воздействия могут изменяться не известным заранее образом, поэтому и при найденном алгоритме управления фактическое поведение системы будет отличаться от желаемого, определяемого алгоритмом функционирования.

Чтобы приблизить поведение к требуемому, алгоритм управления нужно увязать не только со свойствами системы и алгоритмом функционирования, но и с фактическим функционированием системы.

В основе построения системы автоматического управления лежат некоторые общие фундаментальные принципы управления,

Рис. 1.2

определяющие, каким образом осуществляется увязка алгоритмов функционирования и управления с фактическим функционированием или причинами, вызывающими отклонение функционирования от заданного. В настоящее время в технике известны и используют три фундаментальных принципа: разомкнутого управления, компенсации и обратной связи.

Принцип разомкнутого управления.

Сущность принципа состоит в том, что алгоритм управления вырабатывается только на основе заданного алгоритма функционирования и не контролируется другими факторами — возмущениями или выходными координатами процесса. Общая функциональная схема системы показана на рис. 1.2, а. Задание алгоритма функционирования может вырабатываться как специальным техническим устройством — задатчиком программы 1, так и выполняться заранее при проектировании системы и затем непосредственно использоваться при конструировании управляющего устройства 2. В последнем случае блок 1 на схеме отсутствует. В обоих случаях схема имеет вид разомкнутой цепочки, в которой основное воздействие передается от входного элемента к выходному элементу как показано стрелками. Это и дало основание названию принципа. Близость в разомкнутых системах обеспечивается только конструкцией и подбором физических закономерностей, действующих во всех элементах

Несмотря на очевидные недостатки, этот принцип используют очень широко. Элементы, представляемые разомкнутой цепью, входят в состав любой системы, поэтому принцип представляется настолько простым, что его не всегда выделяют как

один из фундаментальных принципов. Этому способствует и то, что общих правил построения разомкнутых цепей можно выделить не много. Основные правила, полезные конструктору, существенно зависят от частных свойств конкретных устройств и изучаются в специальных прикладных курсах по приборостроению и машиностроению.

Упоминавшиеся выше операции включения, отключения и переключения часто выполняют с помощью различных логических элементов и их наборов (выключателями, реле, элементами И, НЕ, ИЛИ и др.), каждый из которых может представлять собой элемент с управлением по разомкнутой цепи.

Другим типом этих элементов могут быть датчики программы, состоящей из устройства запуска программного элемента и самого программного элемента (например, устройство пуска и барабан музыкальной шкатулки, магнитофон, профилированный кулачковый механизм, приводимый в движение двигателем и осуществляющий перемещение рабочего инструмента по заданному контуру, и т. п.).

Следующим типом элементов являются линейные преобразователи. Один вид таких преобразователей осуществляет пропорциональное преобразование одной физической величины в другую, более удобную для использования, другой их вид — усилители — имеют на входе и выходе одну и ту же физическую величину, но с различными значениями ее количественных показателей. Используются также нелинейные функциональные преобразователи.

К элементам разомкнутого типа можно отнести и многие счетно-решающие элементы, выполняющие операции дифференцирования, интегрирования и формирования разных дифференциально-интегральных операторов.

<< Предыдущий параграф Следующий параграф >>
Оглавление