Главная > Теория автоматического управления > Теория автоматического управления, Ч.II (Воронов А.А.)
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 11.2. Классификация адаптивных систем

Поскольку адаптивные системы широко используют рабочую информацию для анализа динамического состояния системы управления и организации контролируемых изменений свойств, параметров, управляющих воздействий и структуры системы управления, то в зависимости от способов реализации контролируемых изменений в процессе нормальной эксплуатации системы можно провести следующую классификацию адаптивных систем: самонастраивающиеся системы, системы с адаптацией в особых фазовых состояниях и обучающиеся системы (рис. 11.1).

Самонастраивающиеся системы (СНС) характеризуются наличием специальных контуров самонастройки, с помощью которых оцениваются динамические и статические свойства

Рис. 11.1

системы и формируются такие контролируемые воздействия, что система самопроизвольно приближается к определенному эталону, часто задаваемому математически в виде критерия качества функционирования. При этом контур самонастройки служит для изменения параметров или структуры основного контура с целью обеспечения заданного критерия качества управления. Обычно критерий качества управления выражается в виде функционала или функции от. параметров и измеряемых координат системы. В процессе работы системы значение функционала качества изменяется и задача контура самонастройки сводится к обеспечению экстремального (минимального или максимального) значения критерия. Нахождение и поддержание экстремального значения критерия качества управления может производиться или с помощью пробных отклонений системы, или путем аналитического определения условий экстремума. В зависимости от указанных способов нахождения экстремума самонастраивающиеся системы подразделяют на поисковые и беспоисковые. В свою очередь, поисковые самонастраивающиеся системы в зависимости от применяемых методов поиска делят на системы со случайным поиском, с поиском по методу Гаусса—Зайделя, с поиском по методу градиента, с поиском по методу наискорейшего спуска. В классе беспоисковых СНС можно выделить самонастраивающиеся системы, использующие информацию о частотных характеристиках, СНС с контролем временных характеристик и границы устойчивости, СНС с эталонными моделями, градиентные СНС.

Системы с адаптацией в особых фазовых состояниях используют особые режимы или свойства нелинейных систем, например режимы автоколебаний, скользящие режимы для организации контролируемых изменений динамических свойств системы управления. Специально организованные особые режимы в таких системах либо служат дополнительным источником рабочей информации об изменяющихся условиях функционирования системы, либо наделяют систему управления новыми свойствами, за счет которых динамические характеристики управляемого процесса поддерживаются в желаемых пределах независимо от характера возникающих при функционировании изменений. Эти системы можно подразделить на релейные автоколебательные системы и адаптивные системы с переменной структурой.

Обучающиеся системы управления характеризуются наличием специальных процессов обучения, которые заключаются в

постепенном накапливании, запоминании и анализе информации о поведении системы и изменении законов функционирования в зависимости от приобретаемого опыта. К процессу обучения приходится прибегать тогда, когда не только мал объем априорных сведений об объекте, но и отсутствует возможность установления детальных причинно-следственных связей в структуре самой системы из-за ее сложности.

Накопление и обобщение информации в процессе обучения можно осуществлять за счет внесения «эталонного опыта» в систему извне либо путем формирования такого опыта внутри системы. Например, в первом случае обучаемой системе предъявляют последовательность ситуаций, образов или режимов, которые имеют заранее известные характеристики или различаются по принадлежности определенным классам. Поведение системы в ответ на такую обучающую последовательность ситуаций формируют на основе принципа «поощрение — наказание», т. е. правильная реакция системы на предъявленную ситуацию запоминается и используется для организации контролируемых изменений динамических свойств системы управления. В зависимости от способов накопления опыта указанные системы разделяют на обучающиеся с поощрением и обучающиеся без поощрения (самообучающиеся) системы.

Значительный интерес к адаптивным системам управления ведет к созданию разнообразных типов систем, предназначаемых для решения широкого круга задач автоматического управления. При построении адаптивных систем часто используют сочетания различных принципов, например самонастройки и обучения, в этом случае создаются комбинированные адаптивные системы управления, наделяемые полезными свойствами различных систем.

<< Предыдущий параграф Следующий параграф >>
Оглавление