Главная > Разное > Астрономия. 10 класс
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

IV. СОЛНЦЕ И ЗВЕЗДЫ

1. СОЛНЦЕ — БЛИЖАЙШАЯ ЗВЕЗДА

1. Энергия Солнца.

Солнце — центральное и самое массивное тело Солнечной системы. Его масса в 333 000 раз больше массы Земли и в 750 раз превышает массу всех других планет, вместе взятых. Солнце — мощный источник энергий, постбянно излучаемой им во всех участках спектра электромагнитных волн — от рентгеновских и ультрафиолетовых лучей до радиоволн. Это излучение оказывает сильное воздействие на все тела Солнечной системы: нагревает их, влияет на атмосферы планет, дает свет и тепло, необходимые для жизни на Земле.

Вместе с тем Солнце — ближайшая к нам звезда, у которой в отличие от всех других звезд мы можем наблюдать диск и при помощи телескопа изучать на нем мелкие детали, размером даже до нескольких сотен километров. Солнце — типичная звезда, а потому его изучение помогает понять природу звезд вообще. Видимый угловой диаметр Солнца незначительно меняется из-за эллиптичности орбиты Земли. В среднем он составляет около 32 или 1/107 радиана, т. е. диаметр Солнца равен 1/107 а. е., или приблизительно 1 400 000 км, что в 109 раз превышает диаметр Земли.

На площадку в 1 м2, поставленную перпендикулярно солнечным лучам за пределами земной атмосферы (например, на ИСЗ), приходится 1,36 кВт лучистой энергий Солнца. Умножив это число на площадь поверхности шара радиусом, равным расстоянию от Земли до Солнца, получим мощность полного излучения Солнца (его светимость), которая составляет около кВт. Так излучает тело солнечных размеров, нагретое до температуры около 6000 К (эффективная температура Солнца). Поток энергии, получаемой Землей от Солнца, равен примерно 1/2 000 000 000 от его полной энергии.

(см. скан)

2. Строение Солнца.

Как и все звезды, Солнце — раскаленный газовый шар. В основном оно состоит из водорода с примесью 10% (по числу атомов) гелия. Количество атомов всех остальных элементов. вместе взятых, примерно в 1000 раз меньше. Однако по массе на эти более тяжелые элементы приходится 1—2% массы Солнца.

На Солнце вещество сильно ионизовано, т. е. атомы лишены внешних своих электронов, которые становятся свободными части-, цами ионизованного газа — плазмы.

Для определения средней плотности солнечного вещества надо массу Солнца поделить на его объем:

это значение соизмеримо с плотностью воды и в тысячу раз больше плотности воздуха у поверхности Земли. Однако в наружных слоях Солнца плотность в миллионы раз меньше, а в центре — в 100 раз больше, чем

Под действием сил гравитационного притяжения, направленных к центру Солнца, в его недрах создается огромное давление. Если бы вещество внутри Солнца было распределено равномерно и плотность всюду равнялась средней, то рассчитать внутреннее давление было бы легко. Сделаем приближенно такой расчет для глубины, равной половине радиуса.

Сила тяжести на этой глубине будет определяться только притяжением масс, находящихся внутри сферы радиусом Объем этой сферы составляет от объема всего Солнца, и при постоянстве плотности в нем заключена Ме. Следовательно, по закону всемирного тяготения гравитационное ускорение на расстоянии от центра «однородного» Солнца составит:

Сила давления на данной глубине складывается из силы тяжести всех вышележащих слоев. Само же давление будет (численно) равно силе тяжести радиального столбика вещества высотой расположенного над площадью в рассматриваемой точке. В этом столбике заключена масса

Поэтому давление

Отсюда получаем, что Па.

Согласно газовым законам давление пропорционально температуре и плотности. Это дает возможность определить температуру в недрах Солнца. Для средней плотности солнечного вещества давление в Па получится при температуре порядка 5 000 000 К

Точные расчеты показывают, чтохв центре Солнца плотность

газа составляет около (в 13 раз больше, чем у свинца!), давление — около Па, а температура — около 15 000 000 К.

При такой температуре ядра атомов водорода (протоны) имеют очень высокие скорости (сотни километров в секунду) и могут сталкиваться друг с другом, несмотря на действие электростатической силы отталкивания между ними. Некоторые из таких столкновений завершаются ядерными реакциями, при которых из водорода образуется гелий и выделяется большое количество теплоты. Эти реакции являются источником энергии Солнца на современном этапе его эволюции. В результате количество гелия в центральной области Солнца постепенно увеличивается, а водорода — уменьшается. В самом центре Солнца за 4—5 млрд. лет, которые прошли с момента его образования, примерно половина водорода уже превратилась в гелий.

Поток энергии, возникающей в недрах Солнца, передается во внешние слои и распределяется на все большую и большую площадь. Вследствие этого температура солнечных газов убывает по мере удаления от центра. Сначала температура уменьшается медленно, а в наружных слоях очень быстро. В зависимости от значения температуры и характера определяемых ею процессов все Солнце условно можно разделить на 4 области (рис. 74):

Рис. 74. Схема строения Солнца.

Рис. 75. Фотосфера с грануляцией и пятнами.

1) внутренняя, центральная область (ядро), где давление и температура обеспечивают протекание ядерных реакций, она простирается от центра до расстояния примерно

2) «лучистая» зона (расстояние от до ), в которой энергия передается наружу от слоя к слою в результате последовательного поглощения и излучения квантов электромагнитной энергии;

3) конвективная зона — от верхней части «лучистой» зоны почти до самой видимой границы Солнца. Здесь температура быстро уменьшается по мере приближения к видимой границе Солнца, в результате чего происходит перемешивание вещества (конвекция), подобное кипению жидкости в сосуде, подогреваемом снизу;

4) атмосфера, начинающаяся сразу за конвективной зоной и простирающаяся далеко за пределы видимого диска Солнца. Нижний слой атмосферы включает тонкий слой газов, который воспринимается нами как поверхность Солнца. Верхние слои атмосферы непосредственно не видны и могут наблюдаться либо во время полных солнечных затмений, либо при помощи специальных приборов.

(см. скан)

3. Солнечная атмосфера и солнечная активность.

Солнечную атмосферу также можно условно разделить на несколько слоев (рис. 74).

Самый глубокий слой атмосферы, толщиной 200—300 км, называется фотосферой (сфера света). Из него исходит почти вся та энергия Солнца, которая наблюдается в видимой части спектра.

В фотосфере, как и в более глубоких слоях Солнца, температура убывает по мере удаления от центра, изменяясь примерно

от 8000 до 4000 К: сильное охлаждение наружных слоев фотосферы происходит из-за ухода излучения в межпланетное пространство.

На фотографиях фотосферы (рис. 75) хорошо заметна ее тонкая структура в виде ярких «зернышек» — гранул размером в среднем около 1000 км, разделенных узкими темными промежутками. Эта структура называется грануляцией. Она оказывается следствием движения газов, которое происходит в расположенной под фотосферой конвективной зоне.

Убывание температуры в наружных слоях фотосферы приводит к тому, что в спектре видимого излучения Солнца, почти целиком возникающего в фотосфере, наблюдаются темные линии поглощения. Они называются фраунгоферовыми, в честь немецкого оптика Фраунгофера, впервые в 1814 г. зарисовавшего несколько сотен таких линий. По той же причине (падение температуры от центра Солнца) солнечный диск к краю кажется более темным.

В самых верхних слоях фотосферы температура достигает значения, близкого к 4000 К. При такой температуре и плотности водород оказывается практически нейтральным. Ионизовано только около 0,01% атомов, принадлежащих главным образом металлам. Однако выше в атмосфере температура, а вместе с ней и ионизация снова начинают расти, сначала медленно, а затем очень быстро. Область солнечной атмосферы, в которой температура растет вверх и происходит последовательная ионизация водорода, гелия и других элементов, называется хромосферой. Ее температура составляет десятки и сотни тысяч градусов.

Она в виде блестящей розовой каемки видна вокруг темного диска Луны в редкие моменты полных солнечных затмений. Выше хромосферы температура солнечных газов достигает и далее на протяжении многих радиусов Солнца почти не меняется. Эта разреженная и горячая оболочка называется солнечной короной (рис. 76).

В виде лучистого жемчужного сияния ее можно увидеть при полной фазе затмения Солнца, тогда она представляет собой поразительно красивое зрелище. «Испаряясь» в межпланетное пространство, газ короны образует постоянно текущий от Солнца поток горячей разреженной плазмы, называемый солнечным ветром.

Рис. 76. Вид солнечной короны: 1 — в годы, когда пятен на Солнце много; 2 — в промежуточную эпоху; 3 — в годы, когда пятен мало.

Причиной нагрева верхних слоев солнечной атмосферы являются волновые движения вещества, возникающие в конвективной зоне. Эти волны проходят через фотосферу и переносят в хромосферу и корону небольшую долю той механической энергии, которой обладают газы в конвективной зоне.

Лучше всего хромосферу и корону наблюдать со спутников и орбитальных космических станций в ультрафиолетовых и рентгеновских лучах.

Временами в отдельных областях фотосферы темные промежутки между гранулами увеличиваются, образуются небольшие округлые поры, некоторые из них развиваются в большие темные пятна, окруженные полутенью, состоящей из продолговатых, радиально вытянутых фотосферных гранул.

Впервые солнечные пятна наблюдал в телескоп Галилей. Он заметил, что они перемещаются по видимому диску Солнца. На этом основании он сделал вывод, что Солнце вращается вокруг своей оси.

Угловая скорость вращения Солнца убывает от экватора к полюсам, точки на экваторе совершают полный оборот за 25 сут, а вблизи полюсов звездный период вращения Солнца увеличивается до 30 сут. За 25 сут Земля проходит дугу своей орбиты около 25° в том же направлении, в котором происходит вращение Солнца. Поэтому относительно земного наблюдателя период вращения Солнца почти на двое суток больше и пятно, находившееся в центре солнечного диска, снова пройдет через центральный меридиан Солнца через 27 сут.

Пятна — непостоянные образования. Число и форма пятен на Солнце непрерывно меняются (рис. 77). Обычно солнечные пятна появляются группами.

Около края солнечного диска вокруг пятен видны светлые образования, почти незаметные, когда пятна близки к центру солнечного диска. Эти образования называются факелами Они гораздо контрастнее и видны по всему диску, если Солнце фотографировать не в белом свете, а в лучах, соответствующих спектральным линиям водорода, ионизованного кальция и некоторых других элементов. Такие

Рис. 77. Изменения видимого положения пятен на Солнце при его вращении.

фотографии называются спектрогелиограммами. По ним изучается структура более высоких слоев солнечной атмосферы и чаще всего хромосферы.

Количество активных областей и групп пятен на Солнце периодически меняется со временем в среднем в течение примерно 11 лет. Это явление называется циклом солнечной активности. В начале цикла пятен почти нет, затем их количество увеличивается сначала вдали от экватора, а затем все ближе к нему. Через несколько лет наступает максимум количества пятен, или, как говорят, максимум солнечной активности, а после него происходит ее спад.

Главной особенностью пятен, а также факелов является присутствие магнитных полей. В пятнах индукция магнитного поля велика и достигает иногда в факелах магнитное поле слабее.

Как правило, в группе пятен присутствуют два особенно крупных пятна — одно на западной, а другое на восточной стороне группы, которые имеют противоположную магнитную полярность, подобно двум полюсам подковообразного магнита.

Магнитные поля играют очень важную роль в солнечной атмосфере, оказывая сильное влияние на движение плазмы, ее плотность и температуру. В частности, увеличение яркости фотосферы в факелах и значительное ее уменьшение (до 10 раз) в области пятен вызвано соответственно усилением конвективных движений в слабом магнитном поле и сильным их ослаблением при большой индукции магнитного поля.

Черными пятна кажутся лишь по контрасту с более горячей и оттого более яркой фотосферой. Температура пятен составляет около 3700 К, поэтому в спектре пятна есть полосы поглощения простейших двухатомных молекул: и др., которые в более горячей фотосфере распадаются на атомы.

Хромосфера над факелами ярче благодаря большей температуре и плотности. Во время значительных изменений, происходящих в группах пятен, в небольшой области иногда возникают хромо-сферные вспышки: внезапно, за каких-нибудь 10—15 мин, яркость хромосферы сильно увеличивается, происходят выбросы мощных сгустков газа, ускоряются потоки горячей плазмы. В некоторых случаях отдельные заряженные частицы ускоряются до очень высоких значений энергии. Мощность солнечного радиоизлучения при этом обычно увеличивается в миллионы раз (всплески радиоизлучения).

В короне наблюдаются еще более грандиозные по размерам активные образования — протуберанцы. Они представляют собой исключительно разнообразные по форме и характеру своего движения облака более плотных газов по сравнению с веществом короны (рис. 78). Форма протуберанцев и их движение связаны с магнитными полями, проникающими из фотосферы в корону.

Солнце оказывает огромное влияние на явления, происходящие на Земле Коротковолновое его излучение определяет важнейшие

Рис. 78. Изменения протуберанца (1 ч 41 мин — нижний рисунок, 2 ч 57 мин — средний, 5 ч 33 мин — верхний).

физикохимические процессы в верхних слоях земной атмосферы. Видимые и инфракрасные лучи являются основными «поставщиками» тепла для Земли. В различных странах мира, в том числе и в нашей стране, проводятся работы по более широкому использованию солнечной энергии для хозяйственных и промышленных целей (выработка электроэнергии, отопление зданий и др.). В будущем употребление энергии прямого солнечного излучения неизбежно возрастет.

Солнце не только освещает и согревает Землю. Проявлениям солнечной активности сопутствует возникновение целого ряда геофизических явлений. Важнейшие из них тесно связаны с хромосферными вспышками. Потоки заряженных частиц, ускоренные во вспышках, влияют на магнитное поле Земли и вызывают магнитные бури, которые приводят к проникновению заряженных частиц в более низкие слои атмосферы, отчего и возникают полярные сияния. Коротковолновое излучение Солнца усиливает ионизацию заряженных верхних слоев земной атмосферы (ионосферы), что сильно влияет на условия распространения радиоволн, иногда нарушая радиосвязь Оказалось, что активные процессы на Солнце, влияя на атмосферу и магнитное поле Земли, косвенным образом воздействуют и на сложные процессы органического мира — как животного, так и растительного. Эти воздействия и их механизм в настоящее время исследуются учеными.

(см. скан)

(см. скан)

<< Предыдущий параграф Следующий параграф >>
Оглавление