Главная > Разное > Астрономия. 10 класс
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

22. СПЕКТРЫ, ТЕМПЕРАТУРЫ, СВЕТИМОСТИ ЗВЕЗД И РАССТОЯНИЯ ДО НИХ

Изучая звезды, наука выяснила их громадное разнообразие, хотя все они сходны с Солнцем в том отношении, что являются самосветящимися, раскаленными газовыми шарами, черпающими из своих недр колоссальные запасы энергии. С одной стороны, это показывает, что наше Солнце во Вселенной не уникально, а одно из бесчисленных солнц и ничем особым из них не выделяется. С другой стороны, установлено, что в многообразии звезд существуют определенные - закономерности, обусловленные физическими причинами.

В звездных каталогах содержатся координаты и оценка звездной величины не только всех 6000 звезд, видимых невооруженным глазом, но и множества более слабых — до 11-й звездной величины. Их число составляет около миллиона. На широко используемом астрономами фотографическом атласе неба видны звезды до 21-й звездной величины. Их на всем небе около 2 млрд.

1. Спектры, цвет и температура звезд.

Спектры звезд крайне разнообразны. Почти все они спектры поглощения. Это результат поглощения света во внешних оболочках звезд. Изучение спектров позволяет определить химический состав атмосфер звезд.

В атмосферах всех звезд преобладающими являются водород и гелий. Характер спектров звезд зависит от температур и давлений в их атмосферах. При высокой температуре происходит разрушение молекул на атомы. При еще более высокой температуре разрушаются менее прочные атомы, они превращаются в ионы, теряя электроны. Ионизованные атомы многих химических элементов, как и нейтральные атомы, излучают и поглощают энергию определенных длин волн. Путем сравнения интенсивности линий поглощения атомов и ионов одного и того же химического элемента теоретически определяют их относительное количество. Оно является функцией температуры. Так по темным линиям спектров звезд можно определить температуру их атмосфер. Это дополняет возможность определения температур звезд по распределению энергии в их непрерывном спектре и по измерению получаемой от них энергии на Земле.

Спектры звезд разделены на классы, обозначаемые латинскими буквами и цифрами (см. рис. 88 и табл. IV в приложении).

Цвет и спектр звезд связаны с их температурой. В сравнительно холодных звездах преобладает излучение в красной области спектра, отчего они и имеют красный цвет. Температура красных звезд низкая. Она растет последовательно при переходе от красных звезд к оранжевым, затем к желтым, желтоватым, белым и голубоватым.

Рис. 79. Годичные параллаксы звезд.

В такой последовательности меняется цвет накаляемого тела. В спектрах холодных красных звезд класса М с температурой около 3000 К видны полосы поглощения простейших двухатомных молекул, чаще всего оксиды титана. В спектрах других красных звезд преобладают оксиды углерода или циркония. Красные звезды первой величины класса М — Антарес, Бетельгейзе.

В спектрах желтых звезд класса к которым относится и Солнце (с температурой 6000 К на поверхности), преобладают тонкие линии металлов: железа, кальция, натрия и др. Звездой типа Солнца по спектру, цвету и температуре является яркая Капелла в созвездии Возничего.

В спектрах белых звезд класса А, как Сириус, Вега и Денеб, наиболее сильны линии водорода. Есть много слабых линий ионизованных металлов. Температура таких звезд около 10 000 К.

В спектрах наиболее горячих, голубоватых звезд с температурой около 30 000 К видны линии нейтрального и ионизованного гелия. Температуры большинства звезд заключены в пределах от 3000 до 30 000 К. У немногих звезд встречается температура около 100 000 К.

Источником энергии, получаемой большинством звезд и Солнцем, служат ядерные реакции превращения водорода в гелий, происходящие в их недрах при температуре свыше 10 000 000 К. (Подробнее об этом см. в § 30.)

2. Годичный параллакс и расстояния до звезд.

Радиус Земли оказывается слишком малым, чтобы служить базисом для измерения параллактического смещения звезд и для определения расстояний до них. Еще во времена Коперника было ясно, что если Земля действительно перемещается в пространстве, обращаясь вокруг Солнца, то видимые положения звезд на небе должны меняться. Земля за полгода перемещается на величину диаметра своей орбиты. Направления на звезду с двух концов диаметра этой орбиты должны различаться на величину параллактического смещения. Иначе говоря, у звезд должен быть заметен годичный параллакс. Годичным параллаксом звезды называют угол, под которым со звезды можно было бы видеть большую полуось земной орбиты (равную 1 а. е.), если она перпендикулярна лучу зрения (рис. 79). Чем больше расстояние до звезды, тем меньше ее параллакс (рис. 79). Параллактическое смещение положения звезды на небе в течение года происходит по маленькому эллипсу или кругу, если звезда находится в полюсе эклиптики (см. рис. 79).

Для определения годичного параллакса измеряют направление на звезду в различные моменты времени, когда Земля находится в разных точках своей орбиты. Параллакс легче всего измерить, если моменты наблюдений разделены примерно полугодом. За это время Земля переносит наблюдателя на расстояние, равное диаметру ее орбиты.

Параллакс звезд долго не могли обнаружить, и Коперник правильно утверждал, что звезды слишком далеки от Земли, чтобы существовавшими тогда приборами можно было обнаружить параллактическое смещение звезд при базисе, равном диаметру земной орбиты. (Подсчитайте, во сколько раз он больше, чем диаметр Земли.) В настоящее время способ определения годичного параллакса является основным при определении расстояний до звезд, и уже измерены параллаксы для нескольких тысяч звезд.

Впервые годичный параллакс звезды был надежно измерен выдающимся русским ученым В. Я. Струве в 1837 г. Он измерил годичный параллакс звезды Веги. Почти одновременно в других странах измерили параллаксы еще у двух звезд. Одной из них была а Центавра. Эта звезда южного полушария неба и в СССР не видна. Она оказалась ближайшей к нам звездой с годичным параллаксом Под таким углом невооруженному глазу видна проволочка толщиной 1 мм с расстояния 280 м. Неудивительно, что так долго не могли заметить у звезд подобные столь малые угловые смещения.

Расстояние до звезды где а — большая полуось земной орбиты. Если принять а за единицу и учесть, что при малых углах получим:

Расстояние до ближайшей звезды а Центавра а. е. Свет проходит расстояние до а Центавра за 4 года, тогда как от Солнца до Земли он идет только 8 мин, а от Луны около 1 с.

Расстояния до звезд удобно выражать в парсеках

Парсек — расстояние, с которого большая полуось земной орбиты, перпендикулярная лучу зрения, видна под углом в Расстояние в парсеках равно обратной величине годичного параллакса, выраженного в секундах дуги. Например, расстояние до звезды а Центавра равно или

1 парсек светового года км.

Измерением годичного параллакса можно надежно установить расстояние до звезд, находящихся не далее или 300 световых лет. Расстояния до более далеких звезд в настоящее время определяют другими методами (см. § 24.1).

3. Видимая и абсолютная звездная величина. Светимость звезд.

Вспомним, что разность в 5 видимых звездных величин

соответствует различию яркости ровно в 100 раз (см. § 3.2). Следовательно, разность видимых звездных величин двух источников равна единице, когда один из них ярче другого ровно в раз (эта величина примерно равна 2,512). Чем ярче источник, тем его видимая звездная величина считается меньшей. В общем случае отношение видимой яркости двух любых звезд связано с разностью их видимых звездных величин простым соотношением:

Абсолютной звездной величиной М называется та видимая звездная величина, которую имела бы звезда, если бы находилась от нас на стандартном расстоянии

Светимостью звезды называется мощность излучения световой энергии по сравнению с мощностью излучения света Солнцем.

Величины и М легко вычислить, если известно расстояние до звезды или ее параллакс (так как обратно пропорционально Пусть — видимая звездная величина звезды, находящейся на расстоянии Если бы она наблюдалась с расстояния ее видимая звездная величина по определению была бы равна абсолютной звездной величине М. Тогда ее кажущаяся яркость изменилась бы в

Кажущаяся яркость звезды меняется обратно пропорционально квадрату расстояния до нее. Поэтому

Следовательно,

Логарифмируя, находим:

Эти формулы дают абсолютную звездную величину М по известной видимой звездной величине при реальном расстоянии до звезды Наше Солнце с расстояния выглядело бы примерно как звезда 5-й видимой звездной величины, т. е. для Солнца

Зная абсолютную звездную величину М какой-нибудь звезды, можно вычислить ее светимость По определению

Величины М и в разных единицах выражают мощность излучения звезды независимо от расстояния до нее.

Абсолютные величины очень ярких звезд отрицательны и доходят до . Такие звезды называются гигантами и сверхгигантами Звезда Золотой Рыбы ярче нашего Солнца в 500 000 раз, ее светимость но видно ее в южном полушарии неба лишь в сильный бинокль. А наше Солнце считается звездой-карликом! Наименьшую мощность излучения имеют красные карлики .

Существуют звезды одинаковой температуры и цвета, но с разной светимостью. У таких звезд спектры в общем одинаковы, однако можно заметить различия в относительных интенсивностях некоторых линий. Это происходит от того, что при одинаковой температуре давление в их атмосферах несколько различно. В атмосферах звезд-гигантов давление меньше, они разреженнее. Если для подобных звезд построить график, показывающий, как меняется отношение интенсивности определенных пар спектральных линий в зависимости от абсолютной величины звезд, то мы сможем по интенсивности линий из графика найти абсолютную величину М звезды. Подстановка найденного значения М в выведенную нами формулу (4) дает возможность определить расстояние до звезды.

(см. скан)

<< Предыдущий параграф Следующий параграф >>
Оглавление