Главная > Разное > Астрономия. 10 класс
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

25. РАЗНООБРАЗИЕ ЗВЕЗДНЫХ ХАРАКТЕРИСТИК И ИХ ЗАКОНОМЕРНОСТИ

1. Диаметры и плотности звезд.

Покажем на простом примере, как можно сравнить размеры звезд одинаковой температуры, например Солнца и Капеллы (а Возничего). Эти звезды имеют одинаковые спектры, цвет и температуру, но светимость Капеллы равна 120 (в единицах светимости Солнца). Так как при одинаковой температуре яркость единицы поверхности звезд тоже одинакова, то, значит, поверхность Капеллы больше, чем поверхность Солнца в 120 раз, а диаметр и радиус ее больше солнечных в раз.

В физике установлено, что полная энергия, излучаемая в единицу времени с 1 м2 поверхности нагретого тела, равна: где — коэффициент пропорциональности, абсолютная температура. Относительный линейный диаметр звезд, имеющих известную температуру Т, находят из формулы:

где — радиус звезды, — излучение единицы поверхности звезды, относятся к Солнцу,

Отсюда

Результаты таких вычислений размеров светил полностью подтвердились, когда стало возможным измерять угловые диаметры звезд при помощи особого оптического прибора (звездного интерферометра)

Звезды очень большой светимости называются сверхгигантами. Красные сверхгиганты оказываются такими и по размерам (рис. 87). Бетельгейзе и Антарес в сотни раз больше Солнца по диаметру. Более далекая от нас Цефея настолько велика, что внутри нее поместилась бы Солнечная система с орбитами планет до орбиты Юпитера включительно! Между тем массы сверхгигантов больше солнечной всего лишь в 30—40 раз. В результате даже средняя плотность красных сверхгигантов в тысячи раз меньше, чем плотность комнатного воздуха.

При одинаковой светимости размеры звезд тем меньше, чем эти звезды горячее. Самыми малыми среди обычных звезд являются красные карлики. Массы их и радиусы — десятые доли солнечных, а средние плотности в 10—100 раз выше, чем плотность воды. Еще меньше красных белые карлики — это уже необычные звезды.

У близкого к нам и яркого Сириуса (имеющего радиус, примерно вдвое больше солнечного) есть спутник, обращающийся вокруг него с периодом 50 лет. Для этой двойной звезды расстояние, орбита и массы хорошо известны. Обе звезды белые, почти одинаково горячие. Следовательно, поверхности одинаковой площади

Рис. 87. Сравнительные размеры Солнца и звезд разных типов (масштабы в трех частях рисунка различны).

излучают у этих звезд одинаковое количество энергии, но по светимости спутник в 10 000 раз слабее, чем Сириус. Значит, его радиус меньше в раз, т. е. он почти такой же, как Земля. Между тем масса у него, почти как у Солнца! Следовательно, белый карлик имеет громадную плотность — около Существование газа такой плотности было объяснено следующим образом: обычно предел плотности ставит размер атомов, являющихся системами, состоящими из ядра и электронной оболочки. При очень высокой температуре в недрах звезд и при полной ионизации ядра и электроны становятся независимыми друг от друга. При колоссальном давлении вышележащих слоев это «крошево» из атомов может быть сжато гораздо сильнее, чем нейтральный газ. Теоретически допускается возможность существования при некоторых условиях звезд с плотностью, равной плотности атомных ядер. (О них и об эволюции звезд подробнее мы узнаем из § 30.)

Мы еще раз видим на примере белых карликов, как астрофизические исследования расширяют представления о строении вещества; пока создать в лаборатории такие условия, какие есть внутри звезд, еще нельзя. Поэтому астрономические наблюдения помогают развитию важнейших физических представлений. Например, для физики громадное значение имеет теория относительности Эйнштейна. Из нее вытекает несколько следствий, которые можно проверить по астрономическим данным. Одно из следствий теории состоит в том, что в очень сильном поле тяготения световые колебания должны замедляться и линии спектра смещаться к красному концу, причем это смещение тем больше, чем сильнее поле тяготения звезды. Красное смещение было обнаружено в спектре спутника Сириуса. Оно вызвано действием сильного поля тяготения на его поверхности. Наблюдения подтвердили предсказания

(кликните для просмотра скана)

теории относительности и тем самым подтвердили саму теорию. Астрономы нашли и несколько других подтверждений этой теории. Это пример взаимодействия физики и астрономии и удивительного многообразия природы.

(см. скан)

2. Важнейшие закономерности в мире звезд.

Мы видели, что существуют и одиночные, и двойные, и кратные звезды, переменные звезды различных типов, новые и сверхновые, сверхгиганты и карлики, звезды разнообразнейших размеров, светимостей, температур и плотностей. Но образуют ли они хаос физических характеристик? Оказывается, что гет. Обобщая полученные данные о звездах, установили ряд закономерностей между ними.

1. Сопоставляя известные массы и светимости звезд, можно убедиться, что с увеличением массы быстро растет светимость звезд: По этой так называемой зависимости «масса — светимость» можно определить массу одиночной звезды, зная ее светимость (белые карлики этой зависимости не подчиняются). Для наиболее распространенных типов звезд справедлива формула где — радиус звезды. Во всех случаях берется полная светимость. Эти формулы показывают, что входящие в них физические характеристики звезд взаимосвязаны.

2. Исключительно большой интерес представляет сопоставление светимости звезд с их температурой и цветом. Эта зависимость представлена на диаграмме «цвет — светимость» (диаграмма Герцшпрунга — Рессела, рис. 88). На этой диаграмме по оси ординат откладывают логарифмы светимостей или абсолютные звездные величины М, а по оси абсцисс — спектральные классы, или соответствующие им логарифмы температур, или величину, характеризующую цвет. Точки, соответствующие звездам с известными характеристиками, располагаются на диаграмме не хаотично, а вдоль некоторых линий — последовательностей. Большинство звезд располагаются вдоль наклонной линии, идущей слева сверху вправо вниз. В этом направлении уменьшаются одновременно светимости, радиусы и температуры звезд. Это главная последовательность. На ней крестиком отмечено положение Солнца как звезды — желтого карлика. Параллельно главной последовательности располагается последовательность субкарликов, которые на одну звездную величину слабее звезд главной последовательности с такой же температурой.

Вверху параллельно оси абсцисс расположены самые яркие

звезды — последовательность сверхгигантов. У них цвет и температура различны, а светимость почти одинакова.

От середины главной последовательности вправо вверх отходит последовательность красных гигантов. Наконец, внизу располагаются белые карлики с различными температурами. Бело-голубую последовательность составляют звезды, вспыхивающие как новые, и другие типы горячих звезд, смыкающихся на диаграмме «цвет — светимость» с белыми карликами.

Эта диаграмма показывает нам связь основных физических характеристик звезд. Заметим, что принадлежность звезды к той или иной последовательности можно распознать по некоторым деталям в ее спектре (§ 23).

3. Мы видим, что в природе не существует произвольных комбинаций массы, светимости, температуры и радиуса. Теория показывает, что место звезды на диаграмме Ц-С определяется прежде всего ее массой и возрастом, следовательно, диаграмма отражает эволюцию звезд. Важным завоеванием науки является выяснение связи между принадлежностью звезд к той или иной последовательности и их расположением в пространстве. Плоская часть больших звездных систем (галактик) состоит из звезд главной последовательности, спиральные ветви в них включают горячие сверхгиганты и цефеиды, а субкарлики и гиганты образуют в галактиках сферическую систему. Это отражает различия условий и времени образования звезд.

Сверхгигантов и белых карликов везде очень мало. Звезд же главной последовательности тем больше, чем меньше их светимость.

(см. скан)

<< Предыдущий параграф Следующий параграф >>
Оглавление