Главная > Математика > Математический анализ. Часть I. (Зорич В.А.)
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 3. Основные леммы, связанные с полнотой множества действительных чисел

Здесь мы установим несколько простых полезных принципов, каждый из которых можно было бы положить в основу построения теории вещественных чисел в качестве аксиомы полноты.

Эти принципы мы назвали основными леммами в соответствии с их широким использованием во всевозможных доказательствах теорем анализа.

1. Лемма о вложенных отрезках (принцип Коши — Кантора)

Определение 1. Функцию натурального аргумента называют последовательностью или, полнее, последовательностью элементов множества X.

Значение функции соответствующее числу обозначают через и называют членом последовательности.

Определение 2. Пусть — последовательность каких-то множеств. Если то говорят, что имеется последовательность уложенных множеств.

Лемма (Коши — Кантор). Для любой последовательности вложенных отрезков найдется точка , принадлежащая всем этим отрезкам.

Если, кроме того, известно, что для любого в последовательности можно найти отрезок длина которого , то с — единственная общая точка всех отрезков.

М Заметим прежде всего, для любых двух отрезков нашей последовательности имеет место Действительно, в противном случае мы получили бы т. е. отрезки не имели бы общих точек, в то время как один из них (имеющий больший номер) должен содержаться в другом.

Таким образом, для числовых множеств выполнены условия аксиомы полноты, в силу которой найдется число такое, что выполнено частности, для любого Но это и означает, что точка с принадлежит всем отрезкам

Пусть теперь две точки, обладающие этим свойством. Если они различны и, например, то при любом имеем поэтому и длина каждого отрезка нашей последовательности не может быть меньше положительной величины Значит, если в последовательности есть отрезки сколь угодно малой длины, то общая точка у них единственная.

<< Предыдущий параграф Следующий параграф >>
Оглавление